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1.0 INTRODUCTION AND BACKGROUND

1.1 Introduction

A parasitic array consists of a main element directly connected
to a receiver plus additional parasitic elements coupled to the receiving
element by the mutual impedance between the antennas. The array antenna
pattern is controlled by adjusting the values of the complex impedances
that terminate the parasitic elements. The value of each terminating im-
pedance determines the phase and amplitude of the signals reflected from
that parasitic element to the receiving element. Thus, the main antenna
element receives the sum of the various reflected signals to form an array
output. The use of such an array for directional beam forming has been
studied by Harringtom, [6-10].

A spatial interference canceller (SIC) uses a parasitic array
with complex terminations for directional null forming. In addition, an
adaptive SIC would require an automatic control algorithm for controlling
the complex terminations, such as: least mean square (LMS), gradient con-
trol, univariate search, dither, etc.

Zeger-Abrams Incorporated (ZAI) has performed an analysis of the
use of a parasitic array for adaptive nulling [1,2]. Below, the "trans-
misgsion-line” model therein presented is refined, and an extended analysis
of the methods of implementation and the performance of using a parasitic
array for adaptive nulling is given.

The goal of the SIC program is to develop a compact adaptive
array (an order of magnitude or more smaller than a conventional array)
using parasitic elements with variable complex terminations. Such an ar-
ray would provide anti-jamming (AJ) capabilities in a very tiny aperture,

using less electronic hardware and fewer RF cables.
1.2 Background

Many present and future receivers (for radio communicatioms,
radar, navigation, IFF, Drf, ELINT, etc.) will be required to operate in
a severe electromagnetic interference (EMI) environment that includes
unintentional local and deliberate remote sources of EMI.

A common problem in Navy HF communications is the presence of
strong intentional and unintentional sources of interference. Usually
these sources have unpredictable azimuthal directions of arrival which

are different than the desired signal azimuths. One technique for reducing
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the interference is to use an adaptive array (AA) that is capable of placing
nulls in the directions of interferers and a main lobe in the directian of
the required signal.

Adaptive array hardware has been demonstrated at various fre-~
quencies from VLF to C-band. Previous AA designs for remotely generated
interferences (e.g., ECM) have employed an array of antennas spaced greater
than a half wavelength in order to minimize inter-element coupling. Inter-
ference cancellation has traditionally taken place in a physical device
(directional coupler, transformer, hybrid summer) functioning as a
phasor subtractor.

Prior AA designs suffer from costly installation of coaxial
cables to elements, poor nulling performance due to inter-element coupling
effects, and great consupption of avallable space on aircraft surfaces
and ship masts by antennas.

These drawbacks of prior designs can be reduced or eliminated
by using the linear superposition property of free space (for electro-
magnetic fields) -to accomplish spatial interference cancellation (SIC).

An antenna array and a conventional beamformer are illustrated
in Figure la. The complex signal envelope Y, incident upon the nth antenna
is weighted (complex multiplication) by the complex weight LA With an
unweighted main antenna, the array output equals yo + anyn, which is the
input to the receiver. Antenna element spacing is typically A/2, and inter-
element coupling is small and is usually neglected.

In a spacial beamformer, illustrated in Figure lb, a main antenna
is connected directly to the receiver, and a compact array of parasitic
elements is terminated in complex impedances. The value of the terminating
impedance Zon of the nth parasitic element is controlled to adjust its
complex reflectivity pn. In this way, the signal Y, incident upon Zon is
weighted before being coupled to the main antenna, where it is spacially
sumned with contributions from the other parasitic elements. The input to
the receiver is equal to Yo + Xmonpnyn. where m

0
complex coupling coefficient between the nth parasitic element and the main

a is the dimensionless

antenna. The similarity of receiver inputs for the conventional and para-
sitic arrays is evident if one substitutes L p_ forw .
nn n
Array pattern control in the conventional array is achieved by
adjusting the LA In the parasitic array one can adjust the pn or the zTn'

If the complex impedance of the transmission line (between the nth antenna
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By combining Equations (2.6) and (2.7), we obtain Vr in terms of v
Yo

-1
= ZT(ZT + ZA) Yoe (2.8)

Yr

Thus we can completely characterize the array during reception
knowing the open circuit mutual impedance matrices of the antenna and
the load networks and the vector of array open circuit voltages, Yoo!
due to an incident plane wave. Harrington gives computer programs which
will calculate ZA and !oc for an array of wire dipole antemnas [10,12].

The impedance model has been briefly introduced here to allow
the reader to become aquainted with it. The impedance model is fairly
well defined in the literature. In the next chapter, the transmission
line model that Zeger-Abrams Incorporated has developed shall be related
to the impedance model. This relationship is based on the theory of

scattering parameters, of which a derivation is given in Appendix B.

2.3 Properties of Compact Parasitic Arrays

The compact parasitic array has many differences with the con-
ventional antenna array. These differences will be pointed out and dis-
cussed in this section.

The most important difference is that the compact parasitic
array has strong mutual coupling. In the conventional array, mutual
coupling is undesired and efforts are made to keep it minimal. The prin-
cipal manner in which this is done, is to keep the antennas far apart.
In the parasitic arrays, strong mutual coupling is necessary for oper-
ation. A small compact array (dimensions on the order of 0.1A or less)
are needed to ensure strong mutual coupling.

Because the array is small, many features of the array will
be broadband and broadbeamed. High directivity will not be possible as
the main lobe will always be somewhat broad. Similarly, when nulls are
formed, the null widths will be slightly wider than those obtained in
conventional arrays. For details, see the experimental results reported
in Chapters 6 and 8.

The frequency characteristics of the array, particularly with
active terminations, are difficult to determine. The reflections off
the parasitic element terminations and the mutual coupling create

very complex feedback that is difficult to analyze. Even more funda-
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The process of nulling a signal is one of finding the pn's such
that Yo ™ 0 in Equation (2.3a). This is done in Sectiom 4.1. The
resulting pn's turn out to be independent of po. This results from the
fact when there is no incident voltage to reflect at the termination
(receiver) of the main antenna, it doesn't matter to the rest of the sys-
tem what po is.

A final comment, for the transmission line model presented here
it has been assumed that there are transmission lines between the antennas
and the terminations. It turns out that this is not necessary (or more
specifically, one can assume trangmission lines of zero length).' This is

shown in Appendices C.1 amd C.2.

2.2 Impedance Model

The impedance model has been used by Harrington in several papers
to describe a parasitic array for various purposes [6-10]. This model of
an array while receiving is illustrated in Figure 5. ZA is the open cir-
cuit mutual impedance matrix of the antenna array looking directly into

the antenna ports. ZT is the open circuit mutual impedance matrix looking

at the terminations through the transmission lines. In our array ZT is
diagonal, but the main results are valid for a general terminating network.
The open circuit voltage, vocn’ is the terminal voltage at the nth port due
to a plane wave incident on the array with all antenna ports open circuited.
As with Yot of the transmission line model, Yoe will depend on the field strength
and wave vector, k, of the incident plane wave. For convenience, the model
used here assumes there are no transmission lines in between the terminations
and the array (or at least the effect of these transmission lines are included
in the impedance parameters).
To compute the vector of voltages across the load terminals, Voo
we must first find the current vector, i.

v, =g+ 21
therefore

Yl . (2.6)

L =-@p+z) v,

But we know that i is related to vp by the load matrix Zpe

!T - _ZTE'- (2.7)
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If the input impedance of the receiver attached to the main
antenna matches the line impedance = z then po = 0. The Equations
(2.3) reduce to

T
pA = XS + MPX (Z.Qb)
(with Oo = 0)

Equation (2.4b) can be solved for the incident voltage vector
of the auxiliaries, y.

y = (I- MP)-]'IS

Thus Equations (2.4) can be rewritten as

yO ySO + EOTPQ-IXS (2.5a)
y = d'y, (2.5b)

(withpO=OandQ-I-MP)

Equations (2.5) could have been obtained directly from Equation
(2.2) using matrix identity (A.9) from Appendix A with the fact po = Q,

. T . T
1 E—gb P 1 .« -y P
Q (p = 0) = esccssnssoven = oo-:...--.
+ 0 I -M . Q
From identity A.9 we can compute
-1 1 :.gérPQ_l
Q+ (po=0) = ........_.1.....
0 . Q
thus ]
- T_ -1 R
Yo 1 EE% PQ Ye0 S
S |
y 0: q Iq

which is equivalent to Equations (2.5).
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Let us now examine what happens during reception. The vector
; ) of voltages, Yy incident on the terminations will be the sum of two terms,
Yo and M+P+y+, as given in Equation (2.1). (See Figure 4.)

Iy T X Y MEPLY, (2.1)

The term Y is due to the incident plane wave. The term M+P+y+ is due
to the incident voltages of b being reflected off the terminations as
P+y+ and then coupled via the mutual coupling matrix M+ into downward
traveling voltages of M+P+1+.

Equation (2.1) demonstrates that the system is one of multivar-
iate linear feedback in terms of the incident voltages Y- The input is
Yoqe The "loop gain" is M+P+. Since active terminations are being allowed,
the reflectivity of the matrix P+ may exhibit gain. Thus it is reasomable
to ask when does the matrix product M+P+ represent positive feedback which
renders the system unstable. This issue of stability is addressed in Sec-
tion 4.2.

Given that the system is stable, one may solve Equation (2.1)
for the voltages incident on the terminals, A

- _ ~1
X, (1 M+P+) You

-1
= QY (2.2)

where Q+ = I - M+P+

We can also separate Equation (2.1) into two equations, one

for the main antenna and one for the parasitic auxiliaries.

- T
Yo " Ys0 ¥ Pofo0"0 * o Fx (2.3a)

Y = 3o tegmy, t My (2.3b)
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The systematic approach considered the voltages in the array
after all the "ping-ponging"” has finished. The equations that described
this state were written down and solved for the various traveling voltage
waves. In matrix form, these equations are represented by Equation (2.1)
below. In the initial analysis the systematic approach yielded little
insight as to what values of the reflectivities, Py and mutual coupling
coefficients, mij' allow stable operation. The only restriction that

came out of the analysis was

det [Q | = det |t - M+P+| £0 .

This constraint was not restrictive enough. It did not prohibit all sit-
uations that were inoperable. In particular it did not prohibit the equival-~
ent of positive feedback.

In the analysis that follows the systematic approach is refined.
With this new model several issues are explored. These issues include
stability, null forming, adaptive control, and the relationship to Harrington's
impedance model.

The refined transmission line model and its parameters are il-
lustrated in Figure 2(a-d). Note it has been assumed M+ is symmetric, or
in general mij = mai. This is true, given that all the transmission lines
connecting the antennas with the terminations have the same characteristic
impedance. This is shown in Appendix C.2, when mij are calculated
directly from their definition via the antenna mutual impedance matrix, ZA'

Hereafter, it is assumed that all these characteristic impedances are the same.
The parameters of the transmission line model have been defined

in 2 manner that allows them to be measured relatively easily from a
physical array. Configurations for measuring the entries of M+ and Y4
are given in Figures 3a and 3b respectively. Note adjustments in the cal-
culations will have to be made due to the phase and amplitude effects of

the directional couplers and the extra cable lengths.

In Sections 3.3 and 3.4, formulae for the computation of M and
Yot in terms of the open circuit mutual impedance matrix of the array, ZA,
are derived. However, calculation or measurement of ZA is quite compli-
cated. Indeed, for measuring ZA’ it is probably easier to measure M+ and

then calculate ZA from {t.

----------

oY DAL IS ST SR A A T P G VAL PR I N S YL SN PP GAP DA W Solt el U Uh WP I UA WO U Tl Share

aad

3

ol

.
'
8 s

, o
. ““.'
LA »
" ade alta ' 'y




A

3

2.0 CHARACTERIZATION OF PARASITIC ANTENNA ARRAYS

The two models of a parasitic array are described in this chapter.
Each model will be described in terms of a receiving array. Then in Chapter
3, the relationships between the models will be established using both receiv-
ing and transmitting arrays. The models have about equal complexity when
analyzing a receiving array. The impedance model is easier to analyze for
a transmitting array. The transmission line model is easier to analyze for
control of the terminations (particularly active terminations) as an adaptive
nulling array. The transmission line model assumes transmission lines
between the array and the terminations, although these lines may be of zero
length. The impedance model may be used with transmission lines between the
cerminations and the array, although the calculations are more complex (as
one sees in Chapter 3).

The main difference between a transmitting and a receiving array
is in a transmitting array the termination is the source and the array is the
load, while in a receiving array the array is the source and the termination

is the load.
2,1 Transmission Line Model

The transmission line model of the array analyzes the voltage
traveling~waves within the cables, antennas and terminations, the inter-
coupling of these waves through the antennas, and the reflections of the
waves off the terminatioms.

The parasitic array with complex terminations has been previ-
ously analyzed by ZAI with transmission line techniques, [1,2]. In this
previous analysis two analytic approaches were used: the infinite series
(ping-pong) approach and the systematic approach. These results are sum—
marized below.

The infinite series approach considered all the possible reflec-—
tions off the terminations and antennas and all the mutual coupling between
antennas. The result was expressed as an infinite geometric series and
summed. However, only the two antenna array could be analyzed. For larger
arrayas the mathematics become to unwieldy. In addition, the constraints

on the reflectivities, pn. and the mutual coupling factors, , necessary

m
i3
for convergence of the infinite series are too restrictive. They disallow

regions where safe operation 1s possible. In particular, negative feed-
back of greater than unity gain. The general question of stability is

very involved and is taken up later in Sectiom 4.2.
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vector of the N + 1 terminal voltages of the antenna array,
vector of the N + 1 port currents of the antenna array.

(N+ 1) x (N+ 1) matrix of scattering parameters of the
N + 1 port antenna network.
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y = y_ due to a plane wave incident on the array with all
sn terminations = 2 s the characteristic impedance of the
- transmission lines. n =0, 1,..., N. Y. 1s dependent
on the wave vector, k, of the incident plane wave.

ySl yso :
Xy = : Y4 = e e
y 'zs
sN ’
mij = mutual coupling coefficients:

the ratio of the downward (toward the termination) voltage
traveling wave incident on the jth termination to the o
upward (toward the antenna) voltage traveling wave trans-— Nk
mitted into the cable from the ith termination. All other
upward traveling waves being zero. All terminations = z,.

i, =0, 1,..., N. Note, M and M, are symmetric matrices.

01 -
o, = : v {“‘ﬁ » B 3= b B
PON g
. : T
M+ = ..0‘9.5.._.0... = [mij] ] i’ j = 0’ 1""' N' ;..4.;
EO T M k
. T
I"MyoPo ¢ B F
Q = I_m ) Q+ = I-M+P+ = :o-;.---E-.oQ--oo
QJ—O : =
z, = characteristic impedance of transmission lines between
antennas and terminations
Zen < impedance terminating the cable from the nth antenna, )
n=20, l,..., N.
Zro 0
ZT i 0 .'z
N
zA - open circuit mutual impedance matrix of the antenna array

at the antenna ports (zero cable lengths).




6)

7)

8)

9

10)

=

andM*[mij] i, j=1,..., N

The absence of the subscript "+" on the matrices M, P, or Q,

or the vectors y or yg will denote that they are N x N or N x 1
matrices or vectors, respectively. They will be composed of
entries only corresponding to the auxiliary antennas (e.g., M or y).

The impedance model works exclusively with the total array.of
main antenna plus auxiliary. This shall be understood with all

its associated variables (ZT’ ZA’-!’ S, etc.) without the sub-
script "+,

Subscripts "R" and "I" will denote, respectively, the real
and imaginary components of the designated value.

The superscripts "T" and "*" will denote, respectively, transpose
and complex conjugation.

In the derivations that are devoted to the single element cases,
all variables become scalars and will be denoted by the appro-
priate lower case, non-underlined letters. Also, all indices
will be dropped.

27
= the wave vector of a plane wave = =~ u, where A is the
wavelength and u is the unit directionm vector of the plane
wave.
= reflection coefficient of the nth termination.

n=0, l,..., N.

pl 0 P E 0
- .. P - es e s
. + : n
0 pN , 0:
= the complex envelope of the voltage traveling wave incident

on the nth termination. n =20, 1,..., N.
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and its termination qrn)has the value Z,, then:

Po = (oqy = 290/ (z + 2) (1.1)

The work described here introduces the following changes to the
previous work of Harrington [6, 7, 8, 9]:

a) Terminating impedances can have complex, not just imaginary
(reactive) values.

b) Terminating impedances can be active (have gain) so that the
restriction lpnl < 1 is removed.

c¢) The impedances are controlled to form nulls toward sources
of interference.

d) A closea loop adaptive algorithm controls the z for pattern control
in order to avoid requiring a knowledge of the a?ray geometry and to

avoid computing tue mutual impedance matrix for open loop pattern
control.

1.3 Scope

The SIC program has been undertaken jointly by ZAI and Naval
Research Laboratory (NRL). ZAI has completed a theoretical analysis of
an SIC and built four electronically variable, active complex terminations
for experimental use. NRL has built an experimental parasitic array. Tests
have been run witn this array using passive reactive terminations and also

using the active complex terminations.

1.4 Glossary of Notation

The following conventions will be observed:
1) Upper case letters will represent matrices (e.g., M or P).

2) Lower case letters with an underline will represent vectors
(e.g., y or XS).

3) Lower case letters without an underline will represent scalars
(e'g" yO or pn)o

4) "0" as a subscript will reference the main antenna (e.g., Yo OF mo).

5) "4" as a subscript added to the matrices M, P, or Q, or the
vectors y or will denote that they have been augmented to
include the cofresponding entries of the main antenna in addition
to those of the parasitic auxiliary antennas. Such a matrix
or vector will now be (N+ 1) x (N + 1) or (N + 1) x 1 respectively
(where N is the number of auxiliary antennas). To be consistent
with Convention 4, as well as not to disturb the numbering of the
auxiliary antennas, the main antenna is assigned an index of "Q".
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mentally, there is little information available on how the array para-
meters, mutual impedances, or mutual coupling factors of compact arrays
vary over frequency. Harrington provides computer programs that can be
used to compute these parameters, [12]. The problem is generally intrac-
table for anything but numerical methods.

An issue thai arises when considering a parasitic array for
nulling is whether to use active or passive terminations. It is a ques-
tion of stability versus degrees of freedom in the control space.

If passive terminations are used, then the array will always
be stable. The mutual coupling between the antennas, however, is neces-
sarily lossy. That is, 100% of the power is not coupled to other antennas.

It is this loss of power, through re-radiation, that often prevents can-
cellation of an interference with only one auxiliary antenna or N inter-

ferences with N auxiliaries. It is usually necessary to use two or more
passively terminated auxiliary antennas to cancel a single interference.
Thus for the same amount of nulling capabilities a passively terminated
parasitic array will require more elements than an actively terminated
array.

An actively terminated parasitic array will give equal or
better performance with fewer antennas. If, however, too much gain is
used then the inherent feedback nature of the parasitic array could
cause an unstable oscillation to start. The issue of stability is taken
up in detail in Section 4.2. The stability analysis determines the op-
timal mutual coupling matrix, M+. In order to increase the usable gain
before instability, one should: 1) minimize the antenna mismatch or
return loss or equivalently the self coupling oo of each antenna, 2) min-
imize the mutual coupling between auxiliary antennas, and 3) maximize
coupling between the main and the auxiliary antennas. The optimal mutual

coupling matrix, M,, is of the form

-+
. T
M = o : EO
+ .ool‘.-o..tti (2.9)
Z i O

The construction of such an ideal mutual coupling matrix can be approached
by two methods, antenna element and array design and by connecting various

impedances between the antennas of the array.

2-11
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Another aspect of parasitic arrays is the inherent non-linear
nature of any control algorithm of the variable terminations. To better
understand this, consider the conventional beamforming array and the pare- -
sitic array illustrated in Figure 1. Both arrays behave linearly in that
for a given set of complex weights or terminating impedances if the inci-
dent plane wave is gcaled by a factor c, then the output of the array will
be scaled by c. The conventional array is also linear in a control sense, -
in that if one of the complex weights are changed by an amount Aw, then
the array output will change by an amount proportional to Aw, given all
other weights and the inputs to the array remain constant. It is in this A
sense that the parasitic array is nonlinear. If one of the reflectivities, -
pn, were to change by an amount Ap, the array output in general will not
change by an amount proportiomal to Ap. From Equation (2.2), the change
in the output (y0 of z+) is determined by the matrix inverse (I - M+P+)_1.
Another way of looking at this is by the gradient of the array output with -
respect to the control variable, either the weights or the reflectivities;
or equivalently be considering the appropriate individual partial deriv-
atives. In the conventional array, the derivatives of the array output
with respect to the weights, ayolawn, are constant and depend only on the -
incident signals and array geometry. For the parasitic array, the deriva-
tives of the output with respect to the reflectivities are functions of
all the reflectivities themselves as well as the incident signals and array _
geometry. The nonlinear control of a parasitic array is discussed in -
greater detail in Chapter 5. Note a mutual coupling matrix as in Equation
(2.9) above along with P = 0 would allow linear control of the array.
In this case ( I - M P )71 M .

Lastly, in this chapter, some properties of a.transmitting array

are discussed. The array far field pattern and the radiated power will be
calculated. A method of calculating the far field pattern based on the array
impedance parameters is described by Dinger [4], for a parasitic array
with reactive terminations. The results are easily extended for general
terminating impedances. Consider the impedance model of an array illus~
trated in Figure 5. Let the voltage sources, Voen® and the load matrix,
ZT’ be the N + l-port Thevenin equivalent of the source network of the
array during transmission. Note that the polarity of the voltage sources
is the opposite of the usual convention. To calculate the far field, one

must first find the port currents, in’ of the array.




+2) v , (2.6)

Under the assumption that the current on each antenna is determined omnly

by its port current, then one can use superposition to add up the con-
tribution of each antemna in the far field.

Let us assume that all the antennas are identical monmopoles and

orientated in the z-direction. Then the far field pattern as a function
of the azimuthal angle, ¢, is given below, [7].

jkr N

Ez (¢) = - JILji;___ z: 1 ejk (xn cos ¢ + Y, sin ¢)

27T 2 (2.10)

n=0

where r is the distance from the array, n is the intrinsic impedance of

free space, and x, and y, are the coordinates of the nth antenna relative

to the array phase center. Note it is assumed |xnl, lynl << r,

A comment on the assumption necessary for superposition. It is

not being assumed there is no mutual coupling. The calculation of the

port current takes that into account. Superposition holds for the cur-

rents on the antennas. But the calculations of Equation (2.6) give us

only the port currents. Thus to use superposition we must assume that

the currents on an antenna are due to its port current alone and that this

antenna current distribution will be the same as that on an isolated an-

tenna. To illustrate further, consider an array of a particular config-

uration with a set of source voltages. Assume that this establishes,

inclusive of all mutual coupling effects, a current in at the port of the

nth antenna.

Now let us move the other antennas around and change the

source voltages but always under the condition that the port curreant of

the nth antenna is maintained at in. The assumption then asserts

that currents on the nth antenna, which give rise to its radiated field,

will not significantly change. This assumption is good for antennas that

are small compared to a wavelength (< A/4) even in a compact array. The

port current alone then will determine all antenna currents. If this

assumption cannot be made then the far field pattern can be calculated

using Harrington's computer programs [12].

If one wishes to use transmission line parameters, Equation

(2.10) above is still used but the antenna port currents are calculated

differently.

In Appendix C.2, an expression for the antenna port cur-

(A




rents in terms of the transmission line parameters is derived. 1In the

RGN AN
‘l

notation of Appendix C.2, 1(&) is the vector of the antemna port cur-
rents.
1. -1

1w = 7z -y @HTa-r)y . (€32

where Zo is the diagonal matrix of the transmission line characteristic

| impedances, D is the diagonal matrix of delays through these transmission
lines (see Equation 3.17) and‘xocis the vector of voltage sources in the
terminations.

Z Lastly, we calculate the power radiated by a transmitting array.
With an impedance model the average power is given by Equation (2.11).

P =1/2 Re [1*T v,]

= 1/2 Re [1"7 2,4]
*T

=1/21 " Re [Z,]1 (2.11)

where i = =(Z,  + 2 )_1 v . The last step is true because Z, is symmetric. '7V§
- A T —oc A
For the transmission line model the power radiated (assuming loss-— -

less transmission line) is _ 1
oT T e

P=1/8 Re [goc (I - 5.8 \_roc] (2.12)
vwhere 5, is given in Equation (3.13) or (3.16). Y lid
- 4
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3.0 RELATIONSHIPS BETWEEN TRANSMISSION LINE AND IMPEDANCE MODELS OF A
PARASITIC ARRAY

T r>z ,"Vlr_‘l.*v_—“’-" ¥

In Chapter 3, we shall examine the relationship between the
transmission line model and the impedance model of a parasitic array. This
relationship will be illustrated by analyzing various aspects of receiving
and transmitting arrays with each model. In particular, it is shown how
to calculate the parameters of the transmission line model from the impedance

parameters. The means of relating the two models will be scattering parameters.

- The derivation of the matrix of scattering parameters, S, 1s given in Appendix
B. The scattering matrix is a generalization of the reflection coefficient,

& T, of a single port system. For an N-port network, with no sources, the
i; i,jth scattering parameter, sij

traveling wave coming out, "reflected", from the ith port due to the

,» 1s defined as the ratio of the voltage

wave incident on the jth port with no other incident waves.
The matrix of these parameters,S = [Sij]’ can be calculated

from Z and Zo. Here, Z is the open circuit mutual impedance matrix
of the N-port network, and Zo is the diagonal matrix of the characteristic
impedances of the media connected to the network ports. We repeat here

equation (B13).

5= (z-2)(z+ zo)'1 (B13)

One comment be“ore continuing, in the previous chapter it was
assumed there were no transmission lines present with the impedance model.
Hereafter, transmission line will be present and their affects explicitly
calculated.

We begin with a treatment of the single element case.

3.1 Single Antenna Transmitting

The impedance model of a single antenna transmitting is given

in Figure 6a. The difference between the transmitting and receiving
versions of the impedance model is the placement of the voltage source
(compare to Figure 5).

For a single antenna, the scattering matrix will be a scalar, ;;;i
s, which is simply the reflection coefficient, I', at the same point. -
We shall retain the notation, s, so that the generalization to an N-port

network will be seen more readily.
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Figure 6 Impedance Model of Single Element Array Transmitting
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In Figure 6b, the important relationships among the various
voltage traveling waves are illustrated. 8, = (zA - zo)/(zA +;z°) is
the scattering parameter or reflection coeficient at the antemna port.
p = (zT - zo)/(zT + zo) is the reflection coefficient of a voltage wave
traveling toward the source, incident on the termination. The trans-
mission coefficient of a voltage wave incident on a junction is the
ratio of the voltage transmitted to the voltage incident. Ignoring any
further reflections, continuity of the total voltage means the trans-
mission coefficient is 1 + I'. Thus, for a voltage wave toward the source
and incident on the terminations, the transmission coefficient is 1 + p.

For a voltage wave from the source and incident on the termination-
transmission line interface, the reflection coefficient is (zo - zT)/(z° + zT)'= -P,
ignoring subsequent reflections off the antenna. Thus, for a similar voltage

wave the transmission coefficient is 1 - p, The scattering parameter, s for

T’
a voltage wave traveling toward the antemnna and incident on the termination-

transmission line interface can be calculated from the results of Appendix C.1l.

sT = (zA - zT) / (zA + zT) from Equation (C4)

[a+8) /1 a-8p]z -2

- - from Rule 2 of (3.1) L
[(1+8) 7 =-8p)z+ 2 appendix c.1

; where ZA and sA are respectively the open circuit impedance and scattering

parameter (reflection coefficient) looking at the antenna within the
antenna transmission line just before the termination.

We can further
manipulate Equation (3.1) to obtain:
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(z +2z) + 5§

= [(zo - zT) / (zO + zT)]+ §A

1+ 8, [(zo -z /(2 * zT)}

(3.2)

If we compare the definition of S¢ to the definition of the

mutual coupling factor, m, and noting that when zT =z, the termination-

transmission line interface becomes invisible, we see that m = sT (with

z. = zo). Indeed this can serve as an alternate definition of m.

T

- A
m 8,
Sq s when zp =z, or equivalently p = Q. (3.3)
- —j2Ba - 42
e SA d SZ
= d%(z, - 2.)/(z, + 2.)
A o Atz (3.4)
where d = EL i
e » B is the propagation velocity of the transmission. line,
and & is the length of the line. Note that §A is independent of Zpe -
Thus, Equations (3.3) and (3.4) allow us to calculate the mutual coupling, ,.j
m, from the impedance parameters z, and z, . i;fq
-
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-~ We shall now obtain Equation (3.2) via the transmission line
model. Consider a voltage wave traveling toward the antenna and incident
on the termination-transmission line interface. Let us call such a vol-
tage wave v(+) (see Figure 7). The voltage that gets transmitted into the
transmission line, ignoring subsequent reflections, is then (1 - p) v(+).

This voltage wave toward the antennas becomes a vol:iage wave toward the

source incident on the termination of m (1 - p) v(+), again ignoring

further reflections. The resultant (after all reflections) voltage wave
incident on the termination from the antenna, y, can be computed from

Equation (2.2) with y, =B (1 -p v(+).

<
1}

-1
(1 - mp) Vg

(1-o0)'m (1 -p) v

(+) (3.5)

The total downward voltage incident on the termination transmits
a voltage (1 + p)y into the termination, traveling toward the source.
There is another component of this voltage, —pv(+), due to the initial

reflection of the original incident voltage v Thus, we can write:

)’

STV(+) = (1+ O)Y - pV(+)

-1
[(1 +p)(1 -=mp) (1 -p) - p]v(+)

and
sp = (141 -m) (1 -p) - p (3.6) ]
(- o s
T e ———————— - p . .
1 - mp ;l
m-=p

=2 — . (3.7)

1 - mp R




- : .q

z (1+P)y y = (l-mp)’lys [sum of all reflections])
T - -

P

= 1- Fr initial reflection
L —Dv(+) yg = ml p)v(+) [From ial refle ]
v -
g
- m Impedance = z, ZA
| 3
O C \[\
_ v (1-P)v
- + +
+) +) Antennna
Impedance

Figure 7 Transmission Line Model of Single
Element Array Transmitting
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But we know that m = §A’ therefore Equation (3.7) is identical to
Equation (3.2).

In this Section, we have demonstrated that m = §A - sT(D)lp-O.

and have calculated Sp through both the impedance and transmission line

models.

3.2 Single Antenna Receiving

The impedance model of a single antenna during reception is
given in Figure 8a. Figure 8b illustrates the accompanying traveling

wave parameters. Let us find the voltage across the termination, v

T
Let vy be the voltage across the antenna port. Then we can find vy
from the current out of the port, iA'

v, = -z, (3.8)
But, iA is given by

i, = -(z.+2) (3.9)

A T A oc
therefore, by combining Equations (3.8) and (3.9), we obtain

v, = 5.3, +2,) v (3.10)

A T T A oc '

From Rule 2 of Appendix C.l, we know that

~ ~ ~ -1
2, (1 +9)(1 -0 z

where p is the reflection coefficient seen looking into the transmission

line at the anterna. Substituting this into Equation (3.10), we obtain

ARt
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- A=l -1
v = 1+ =D (A +DA =Bz, + 2] v

-1
= A+ Pz [+ Dz + (1= Bz ] v

-1
= A+ Pz l(zy +2) - plzy -2 )] v,

A -1 A -14-1
= (1 + p)zo(zA + zo) (1 - p(zA - zo)(zA + zo) ] A

-1 1
= - +
But Sy (zA zo)(zA zo) and zo(z

+ - -
A zo) 1/2(1 SA)’ therefore,

v, = 120+ DU -s)( - 6SA)_1v0C (3.11)

To relate va to Vo we must consider the traveling waves within
the transmission line. Let § be the voltage traveling toward the term—
ination, measured at the antenna end of the transmission line. Since
there is no source in the termination, the total voltage at the antenna

end of the transmission line is ¥ plus the corresponding reflected

voltage p§¥. Therefore,

v, = (1+p)¥ and

- A—l
y = (1+p) v,

If y is the voltage traveling toward the termination, incident on the

termination, then y = d¥, where d = e-jBQ’ is the delay associated with

the transmission line of length £. Finally, the total voltage at the
termination, Vs is the sum of incident and reflected voltages at the

termination.




v, = (1 +p)y

= (1 + p)d§

maa + oLy

= (1 A

+

= 120+ (1 - s (1 - Bs) Ny

= 1/2(1 + p)(1 - gAp)'ld(l - s v (3.12)

h = =
where p d p and § d's,.

If we compare v to the definition of Y e see. that

T

Yg = vT with 2y = 25 OT equivalently p = 0. Similarly, as in the case

of m, this could serve as an alternate definition of y .
s

Yo =V
s T 0=0

= 1/2d(1 - sA) Voe (3.13)

Let us examine Equation (3.13). From Equation (C6) of Appendix
C.1 we know that the traveling voltage from the antenna, incident on the
antenna-transmission line interface, is simply (1/2)voc. The reflection

coefficient seen from the antenna is -s, and the transmission coefficient

A
is then 1 - 8)- Thus, the traveling voltage wave that gets transmitted
through this interface is (1/2)(1 - sA)voc. Vg is simply this voltage
multiplied by d to account for the delay in the length of the tramnsmission
line.,

Equation (3.12) can also be quickly derived through the trans-

mission line model. Let the argument in the preceding paragraph establish
Equation (3.13). Then the total voltage in the transmission line inci-
dent on the termination, y, is given by Equation (2.2) as applied to a
single antenna case.

y = 1/2Q1 - mp) Yd(1 - 50V
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The vector u is physically dimensionless. While its physical meaning is
not abvious, u does contain all the information of the incident signals

necegssary to form the nulls. From Equation (4.7) we can write

P(Mu‘_n_lo) =E ' 1.8

Since P is a diagonal matrix, Equation (4.8) represents N equations of

the form
(ul

n_  [Mu -m (4.9)
- n on

where [']n represents the nth entry of the vector

argument.

There are possible sets of initial signal vectors, xsn' which
will result in a u that causes the denominator of Equation (4.9) to be
zero. This means the array, for that combination of the N incoming
signals, loses a degree of freedom in the control space and will only
be able to null N-1 signals. This, however, is not a particularly
scandalous result. Similar behavior is observed in a conventional adap-
tive array with an unweighted main antenna. Consider the 3 element array
in Figure 13. Since the arrival directions of the signals are symmetric
about an axis througn the two auxiliary antennas, the relative phase
between the two signals will be the same at both antennas. If the two
antennas have identical azimuthal gain patterns, then the signal at one
antenna will be linearly dependent on the other, i.e., the signals will
be equal except for a complex scalar. 1In this case only one of the sig-
nals can be nulled.

The concept of degrees of freedom is a useful concept in
adaptive arrays. In a conventional array with an unweighted main antenna,
the number of degrees of freedom is generally the number of weighted
auxiliaries. Similarly in a parasitic array, with a constant termination
on the main antenna, the number of degrees of freedom is generally equal
to the number of active complex terminations. The number of signals that
can be canceled is equal to the number of degrees of freedom.

A degree of freedom can be lost in several ways. In the
example above in Figure 13, a degree of freedom was lost because the sig-
nals were linearly dependent at the weighted antennas but the signal at

the main antenna was independent of the weighted antenna signal. Also

‘4’ a 4 ah




Now the equations of (4.1) can be rewritten as

T - T om oy T om Tpy
Yo Y0 ooof o To
- T .
Y=Y o+mopy "t o+ MPY (4.2)

If the reflectivities needed for a null are used then XO = 0, and

Equations (4.2) become

T T
O=Xs 0 +_19_0 PY (4.3a)
Y = Ys + MPY (4.3b)
Let us solve Equation (4.3b) for Y (compare to Equation 2.5b).
-1 -
Y = (I - MP) YS (4.4)
Substitute Equation (4.4) into Equation (4.3a).
_ T . -1 —aeree
0 =Yg +EOP (1 - MP) Yo (4.5)

If Ys is not invertible, that means the set of vectors of
initial auxiliary voltage waves is linearly dependent. The system is
not fully constrained. Two signals may be arriving form the same direc-

tion. In the process of nulling N-1 signals the Nth will be nulled for

"free".

Assuming that all the signal vectors are independent let us post

multiply both sides of Equation (4.5) by Ys'l.
T -1 T -1
= - 4.6 -
0 Yoo Ys +my P(1 MP) ( ) ]
Now let us post multiply both sides of Equation (4.6) by (I-MP). .",
)
T 1 T ]
0=lso Ys (I'MP)+EOP 1
T, -1 T -1 e
= - M p .
Yso Ys + (mo Y s0 Ys ) 1
= ET + (m - ETM)P (4.7) o
T
T -1 -1
where u” =y = Y, or u= (Y_ ) A
-
4-2




4.0 NULL FORMING CAPABILITY OF AN ACTIVELY TERMINATED PARASITIC ARRAY

4.1 Forming N Nulls on N Simultaneous Signals

In this section on forming multiple nulls, it has been assumed
that all the signals are at the same frequency. This was required so
that the array coupling matrix, M+, would be the same for all the signals
desired to be canceled. 1In Chapter 5 when adaptive control is discussed
it will also be assumed that these signals are uncorrelated. This con-
straint is applied to keep the analysis tractable. Cancellation of
signals of different frequencies is possible and is discussed briefly
later, but a detailed analysis was not possible under this contract.

Given a parasitic array of a main antenna and N auxiliaries,
let us find the reflectivities, pn, necessary to null N signals. Let each
incident signal be expressed by the voltage waves that the signal pro-
duces in each transmission line incident on the termination, in the absence

of the other signals and with all terminations = (the transmission line

z
characteristic impedance). Let the vector of the zoltage waves at the N
auxiliary antennas from the nth signal be Yen and the main antenna vol-
tage ysOn' Similarly, let Y, be the vector of final voltage waves inci-
dent on the auxiliary termination and Yon the final voltage wave incident
at the main antenna termination for the current set of reflectivities

due to the ntn signal. These quantities can be related by the following
equations (see Equation 2.3).

T
Yo1 = Yg01 * ®ooPo¥o1 * Do X,
Yj) =Yg *BoPeY Y MY,

T
Yson ¥ PooPo¥on t 2o Fiy (4.1)

Yon

Yy = YLgy * BoPo¥on * MPL

The i,) indices of each yij denote the antenna and signal source respectively.

To express these more compactly, let us define the following:

Y01 Ys01 )

= = * —
Lo . r Lo . ’ Y'[XI‘U-IXN] -
Yon ¥ son IR

and Y5 = [y sl |- lx sN] : 4
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the antenna sources Yoo incident on the transmission line antenna port
interfaces, will be 4 Yoc The voltages transmitted into the trans-

mission lines will be % (I - SA)!;oc' Y is simply the vector of

s+
transmitted waves as they appear at the other end of the transmission

lines, i.e., phase-delayed by D.
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Now knowing SA (the scattering matrix of the antenna) = (zA - zOI)(ZA + zOI)-l

and using identities A.3 and A.6 reduces Equation (3.26) further.
v, =5(I +B)(1-58)Y-s)v (3.27)
A + A+ A’—oc

The voltages of interest however are Y-
Yp = (I+P+)x
A

= (I + P+)Dx (3.28)

i is the vector of voltage traveling waves entering the transmission lines
at the antenna ends and flowing toward the terminations; therefore,

~ A A A -l . s .
Ya =A(I + Py, and y = (I + P+) V,- We now substitute this expression
for y into Equation (3.28).

a . -1
= (I + P+) D (I - P+) v

A ¥a

]

a -1
B(I +P) D (I-5,P) "(I-S,)y__

-1
=H%(I+P)D(I- §,DP,D) (I - SRAA

-1
=h&(I+P) (I- Ds,DP ) "D(I - sA)_\_roc

-1
B(I +P) (I-S,P) "D(I -5,y

C

= (I +P) Q'l D(I - S,)v (3.29)

C
Equation (3.29) shows the relationship of the voltage across the termina-
tions Yo to the open circuit voltages using transmission line parameters.
By comparing Equations (3.28) and (3.29), one can find an expression for

Yo, = Q,y in terms of Yoc®

Loy © 5D (I - SA)‘—,'O (3.30)

[

Let us analyze this equation a little. 1In a manner similar to the e

P S U

derivation of Equation (ClB8) it can be shown that the voltage waves from

-
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The impedance model of a multiple antenna array receiving is
given in Figure 12. As in Section 3.3 the indices for N + 1 antenna
elements shall be 0, ..., N, where 0 is the main antenna. Figure 12
illustrates the various transmission line parameters for a receiving array.
The usual quantities of interest for a receiving array are the voltages
across the..terminations LA

Within the transmission line model, Yo is the vector of voltages
transmitted to the termination; therefore,

Vo = (I + P+)x*. (3.22)

Equation (2.2) tells us Y, = Q+_lxs+. This can be substituted into

Equation (3.22) to obtain Yo in terms of the transmission line parameters.

_ -1
Ve = (T+PJQ ¥, - (3.23)

For the impedance model the calculation is more involved, unless
the transmission lines are of zero length, in which case Equation (2.8)
may be employed. With transmission lines one must use the equations of

Appendix C.2. First one must find !A' the vector of port voltage of the

array.

-1
= -+ .
v, ZT(QT Z,) V.. (3.24)
where ZT is the diagonal matrix of the terminating impedances as seen
from the antenna end of the transmission lines. From Rule 2 of Appendix C.2,

we find

A P A =1

zT = (I + P+)(I - P+) z (3.25)
where §+ is the diagonal matrix of reflection coefficients of the termi-
nations translated down the transmission lines to the antennas and z,

(a scalar) is the characteristic impedance of the transmission lines.
Substituting Equation (3.25) into (3.24) and manipulating the equations

somewhat yields

- oy -1 _ ~ -1
Vo = (I # ) [T + (zoI + zA) (z, ZA)P+]z°(z°I + zA) Yoo (3.26)
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At this point, let me restate the conventions on the use of "+"

as a subscript, as put forward in the Glossary of Section 1.4. With the
variables: Yor Your M+, P+, or Q+, the subscript signifies that the
variable describes the entire array of main and auxiliary antennas. When
“+" is used with parentheses with the variables: Vo) °F Ly it signifies
that the variable represents a traveling wave or waves, and in particular
voltage waves traveling toward the antennas (see Appendix C).

The individual total voltage wave, Y, r incident on each termination
interface transmits a voltage wave of (1 + pn)yn through the interface and
into the termination. This is expressed for all the voltage waves in vector
form by (I + P+)x+.

The total voltage wave within the nth termination traveling away

from the termination-transmission line interface is the sum of (1 + pn)yn

and an initial reflection from vn(+) incident upon the termination-transmission
line interface. This initial reflection is -pnvn(+). In vector form, this
sum is (I + P+)X+ - P+!(+). However, we also know that this total voltage
wave is simply (by definition) ST!(+)'
= + P - PV
Sp¥ey T (B ERJIY, - PV, (3.20)

-1
[(I +P)(I-MP) MA(I-P) - P+]!(+)

Thus we have found an expression for ST'

-1
S, = (I + P+)(I - M+P+) M+(I - P+) - P

B (3.21)

+

= -1 - -
=(I+P)Q MI(I-P)-P,

It . an be shown that this form for sT is equivalent to Equation (3.16),

noting that M_ = QA. This is done in Appendix D.

3.4 Multiple Element Array Receiving

The material presented in Section 3.2 is generalized in this
section for the multiple antenna array. As in Section 3.3 voltage and
currents will now become vectors of voltages and currents. The reflection

and transmission coefficients will become matrices.

e e .




D 4.1..1.11\4;’\111]1#111.

fur3aztusuexl Aexxy juswaTd ITATITNH JO TIPOW SUTT UOTSSTWSURIL T[] 9InBTJ

A A et e St W SR asen ane ~

(o]

Z = aouepadwI 3o

S3UuTT uorsstTwsuex] TIVv

™~

(+)N

A Ma-1)

z> = K310019A uor3zebedoag

B saenr onm saam

v
XTI ~+vw~+mnuu _ A+v- o
purtdnod ¢
TeN3INK = .
. .

¥z
XTIICH
aouepadu *
ITM nﬁOﬁUOQHN@H
(+)- +8< (+) =+
Xex1zy , TeTITUT WoxJ) A[7a-1) wa X _ Ag- (+)~1
, o— ams— = AS
] vuuIIUY (SUOT109TIoX o ‘4 = _ N =
_ Tre o uwns) A [T W-1] = "4 X[ a+1) T
g 7% « Far fed ) = (+)0 ~
- J0T3A uoTlebedox
| | °n = £3100TA woTY a ($)0, 05 o | h A m.uoﬁ
+ ....
, | | (+)0,04_ o
. ! —O AN »
— O ——e 0L 2

z [

3 - o o » e
_ T oa l A(7d+1) ;




Py A R A A S At Py MZMEEMIFS e S Ca e P e e et el i A At A i AV e Aos S S e

e 380 0
-— = . and B = (_D_
where D n vn
[ ]

O e jBNLN

Note that SA is independent of the terminating empedances, zTn's. Thus

M+ = §A and be used to calculate the mutual coupling matrix from the

antenna impedance matrix, 2 the characteristic impedance z, and the

A'
transmission line length 2n's.
In addition, one can solve Equation (3.17) for zA in terms of

§ = M, . If desired one can calculate zA from M+.
1

-1 =1. -1 -1
= - + D
z, =z, [1-D MDD "] [1+D MD"] (3.18)

A

We shall now obtain Equation (3.16) from the transmission line

model. Consider a voltage wave, Vv from each source, traveling toward

n(+)1
the antenna and incident on the termination~transmission line interfaces.
Let all these voltage waves be combined into the vector Yi4y® At the nth
interface, the transmitted wave (ignoring further reflections) is then

(1 - pn) vn(+).

becomes (I - P+) v

Considering all N + 1 interfaces, in vector notation this
(+)s where P+ is the diagonal matrix of the N + 1 reflec-
tion coefficients (see glossary in Section 1.4). These voltage waves are
illustrated in Figure 1ll. These voltage waves toward the antennas are
coupled (or scattered or reflected) through the antennas to produce reverse
traveling waves toward the terminations. The reverse voltage waves inci-

dent upon the terminations from a single round trip, in vector notation

are M+ (I - P+) v Let us consider these initial reverse traveling

(+)°

waves as equivalent initial waves produced by an imaginary incident plane

wave. Let the vector of these voltage waves be Yo, From Equation (2.2),

the final (after all reflections) voltage waves traveling toward the
terminations and incident on the termination-transmission line interface 1
will be Y, where

y, = -up) 7ty (2.2)

-1 7 )
=(I-MP) M (I-P) Yi4) (3.19)




z , the impedance matrix seen at the termination end of the cables,

A ~
can be calculated from SA and Rule 3 of Appendix C.2, where SA is the scattering
,1 matrix seen from the termination ends just inside the cables.
"~ ~ -1 ~
Z = [1- .
N (1 SA] [1+ sA] z, (3.14)

Thus Equation (3.13) can be rewritten as

Sy = [[1 - §A]'1 {1 + §A] z - zT] [[I - §A]'1 [1+8,] z + zT]'l (3.15)

AN JREEERS

Equation (3.15) is the generalized form of Equation (3.1). Let us manipulate
further this form for ST' From Identity A.3 of Appendix A, we see that
A 91 A~ ~ A a=]
(1 - sA] 1+ SA] [T+ SA][I - sA] .
~ P |
[ [[1 + SA][I - sA] 2

T o

- ZT] [[1 +801-81" 2 + zT] -1

= [[1 + §A] z, -z [1 - §A]} 1 - 's‘A]'1 [T - §A] [[1 + §A1z° +z,01 - §A]]“l

[[ZT + zoI]§A - [ZT - zoi]][[zT + zOI] - [ZT - ZOI]§A]-1

[z, + 2,1] [§A - [z, + zoI]"1 [z, - zoI]]

'Y [I - [ZT + zoI]—I[ZT - zoI]§A] -I[ZT + zc’I]—1

-1 -1
By applying Identity A.3 again, [ZT + zOI] [ZT - zoI] [ZT - zo-II[ZT + z°I]

= P+, and

sy = (2p + 2 1118, - P,1(1 - B,§,17 (2, + 2 117" (3.16)

Here Equation (3.16) is the generalized form of Equation (3.2). As in the j‘j

single antenna case let us now set all the terminating impedances to z,» -4
i.e., ZT - zOI, or equivalently P+ = Q. ]
~ a =1 -1 ]

S =2z I[S, - OJ[I - 0-5,] "[2 21] "

P =0 i

+ -4

But ST when ZT - zQI ig8 the definition of &+, the matrix of mutual coupling - i
factors., Therefore it is always the case that M = gA' s
We can also calculate §A from Rule 3 of Appendix C.2. 1

~ - -1 i K

SA D [ZA zOI][ZA + ZOI] D (3.17) :.l

|
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The voltage across the termination, Vi by cdhtinuity is the total
voltage at the end of the transmission line. The total voltage is
the sum of the incident and reflected traveling waves. Thus, we can

write
vp = (1 +p)y

- A+ -y,

= 2A+pU -7l - sV

If we remember that m = §A, then we see that the above equation is indeed
Equation (3.12).

In this section we have derived the relationships that exist
between the transmission line model and the impedance model of a single
antenna while transmitting. The voltage across the termination was
derived through both models, and we obtained alternate definitions for

Ygr the incident voltage on a matched termination due to a far field
source, and for m, the mutual coupling coefficient.

3.3 Multiple Element Array Transmitting

The material presented in Section 3.1, is generalized in this
section for the multiple antenna array. Voltages and currents will now
become vectors of voltages and currents. The reflection and transmigsion
coefficients will become matrices.

The impedance model of a multiple antenna array transmitting is
given in Figure 9. To remain consistant with the rest of the text, we shall
assume an array of N + 1 elements and use the indices 0, 1, ..., N. Figure
10 {llustrates the various transmission line parameters while the array is
transmitting.

The transmitting array is characterized by ST’ the scattering
matrix seen by the terminations looking into the transmission lines.

An expression for the matrix S, can be calculated from Equation (Cll) of

Appendix C.2.

T

~ A -1
sp = (2, - zT][zA + zT] (3.13)

3-11

................
Lo e PR . S
LR “, Ve et e et P

LT ST s
L A SN SN 1 3 4 At L. 3 ol

LA I UL P .
A s " a2 m s,

1




Main

Antenna
1sc
Auxiliary
Antenna
\
™~ Auxi?.cilary
~~ Antenna
\ —-—~——\/
‘\ /,/ J l
7 \
\) a
\ /
Azimuthal Arrival
Angles a = B.
Symmetry About
Line Through JZ
the Antennas

Figure 13 Scenario Which Removes a Degree of
Freedom in Conventional Array




A AR AN R ey e e S Sran S A4 AN S AR R it P .I' .- M

above, it was shown for a parasitic array certain combinations of inci-
dent signals could cause the loss of a degree of freedom. As will be
discussed in the following section, the need to suppress an instability

will also remove a degree of freedom.

The number of degrees of freedom is the dimensionality of
the usable control space. Initially, the dimensionality is equal to
the number of control variables, i.e., the number of complex weight or
variable reflectivities. 1In the derivation above it was assumed the
array was maximally constrained, that the N control variables were trying
to null N signals. 1f there were fewer than N signals to null, then there
would not be particular values for the reflectivities as given by Equation
(4.9), but a range of suitable values.

The reflectivity values necessary to form nulls can be cal-
culated from Equation (4.9). Before cancellation can be achieved, how-
ever, one must also determine that the -array is stable for those reflec-
tivity values. Stability is a separate issue and is addressed in the
following section.

The issue of nulling signals at different frequencies will be
briefly discussed. First note that. at the different frequencies the

mutual coupling coefficients will in general be different. Let us define

T X
m,, 2and Mn to represent the mutual coupling factors at the frequency of
the nth signal. Rewriting Equation (4.1) and applying the constraint

that the main antenna voltage is O at a null, we obtain the Egquations
(4.10).

T
0=Yg *Bo Xy
Yy =¥ YMPY,
T
+ m

Yoon * Ron PLy

Y= Yoy Y MFLy (4.10)

T
T N

e e Mt saa et S i

T I |
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Note these equations cannot be combined as was done before. However,
the xn can be solved for and substituted.

0=y + T

-1
s01 Y RBo1 P I -MP) Ty

_ T -1
0= Yson * Bon © (1 MP) A (4.11)

This is a set of N nonlinear equations in N unknowns, Prreeesr Py The

solutions of these equations are not easily obtained.

4.2 stability of a Parasitic Array With Active Complex Terminations

There are two types of stability that can be analyzed in ref-

erence to a pargsitic adaptive array, RF stability and control stability.

The issue of RF stability is independent of whatever contrcol algorithm

is being used. RF stability determines whether the system is stable for -
a given set of reflectivities. This section deals with RF stability.
Control stability is the issue of stability and convergence of the algo- jf?
rithm controlling the reflectivities. Control stability is discussed in _::
Chapter 5. -

It was pointed out in Section 2.3, that given a set of reflec-
tivity values, a parasitic array is linear in terms of plane wave inputs
relative to an output to the receiver. The domain of RF stability is
simply those sets of reflectivity values for which this linear system is
stable. The determination of that domain is extremely complex and shall
be accomplished in two steps. First a necessary condition for stability
is derived and discussed. This condition is shown to be sufficient in
certain cases. Several examples are analyzed to give insights into the
behavior of an actively terminated parasitic array. Then a general suf-
ficient condition is derived.

The necessary condition is derived for a specific frequency of
operation. In general the mutual coupling factors, m o will be functions
of frequency. The reflectivities will also not be constant over frequency
due to characteristics of the electronics. The necessary condition re-

quires that at the frequency of operation, the array does not exhibit
positive feedback.
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Let us first study a single antenna. Figure l4a illustrates the
signals in a single anterna. Figure 14b illustrates these signals in a
system block diagram. From the equation for simple feedback the output
is computed to be y = (l-mp)-1 Ygo given the system is stable. 1It is a
well known result that a necessary condition for stability is Re[mp] < 1.
sStating this condition another way, Re[mp] > 1 is a sufficient condition
for instability.

Looking at the complete array we obtain Equation (2.1).

X, = Y, * MPy, (2.1)
As long as M.+P+ does not represent positive feedback in some manner, the
array will be stable. To study the multidimensional feedback represented
by M+P+ it will be convenient to introduce the concept of eigenvalues and
eigenvectors.

For a matrix, A, there are certain vectors called eigenvectors,
that when operated on by the matrix A return a scaled version of them—
selves. The scale factor, A, for an eigenvector, x, is called an eigen-
value. Equation (4.12) illustrates this relationship for an eigenvalue,

A, and an eigenvector, x.

Ax = Ax (4.12)

For an NxN matrix there are N eigenvalues not necessarily dis-
tinct. These eigenvalues are found as the roots of the polynomial
Det (AI-A). For each eigenvalue there is an eigenvector, X, determined
to within a scalar factor. If the eigenvalues are distinct then the set
of eigenvectors is linearly independent and in fact mutually orthogonal.

The matrix of these eigenvectors, T = [50 I...quﬂ, will diagonalize A.

If the eigenvalues are not distinct, then the set of eigenvectors may

or may not be linearly independent. If they are not, a set of generalized
eigenvectors can be found which is linearly independent, [16, Chapter 2].
The matrix of these generalized eigenvectors, in a manner identical to

that above, will transform A into what is called Jordan form. Jordan form

PR U AP N AR R
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has the eigenvalues on the main diagonal, 1l's in particular spots on
the diagonal directly above it and 0's every where else. In the dis-
cussion that follows, for computational ease, it will be assumed that
M+P+ has distinct eigenvalues. The results derived, however, can be
shown valid for general matrices by considering generalized eigenvectors
and their accompanying Jordan forms [16].

Let AO ,...;AN be the N distinct eigenvalues of M P+ and
L IVEERR & the corresponding eigenvectors. Finally, let T

—o
Since the eigenvectors are linearly independent, the vector Y, of

Equation (2.l1) can be expressed as a weighted sum of them.

N
L, 7 L 3%y
i=0
h "o
= Ta wherxe a = M
= = : ) (4.13)
aN

From Equation (4.13), the weightihg value for x; is seen to be the ith
component of the vector T_lx+. Similarly, ¥, can also be written as a

weighted sum of the eigenvectors.

N
Yoo = L By% = TR
i=0
bO 1l
where b = . and b =T Yo, - (4.14)
bN

With Equations (4.13) and (4.14) one can rewrite Eqiation (2.1) as below.

N N N
L aX; <~ bjx; *MF, L 3iXy
i=0 i=0 i=0
N
= Z (b, + X,a,) x. (4.15)
1 1 1 —1
i=0

We see that Equation (4.15) really represents N + 1 independent equations

of the form,

a b. + A.a, , fori=20,...,N . (4.16)
1 11

i
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Here the N + 1 dependent variables yo,...,yN have been trans-
formed into the independent variables Bgreecrdye Thus the feedback nature
of the array can be expressed by N + 1, independent subsystems of the
form illustrated in Figure 14b, where the loop gain is Ai for the ith sub-
system. We can apply the previously derived stability condition to each
of these subsyctems and thereby generalize the result for an N + 1 element
array. Given the array parameters, mij«and pn, as measured for a par-
ticular frequency, one can find AO""'AN' the N + 1 eigenvalues of
M+P+. Then a necessary condition for stability is Re[ki] < 1 for all
i=o0,...,N. As previously stated, this result can be shown valid for

general M+P+.

With a parasitic array, a useful and practical constraint is
often that the reflectivity of the main antenna be zero. This means
the receiver is well matched to the transmission line. Under this
condition one eigenvalue of H+P+ is necessarily 0, and the rest are the
eigenvalues of MP. Thus if po = 0, one need only consider the array of
auxiliary elements in a stability analysis.

It is shown in Appendix E if the reflectivities contain a single
stage, narrow bandpass filter, such that the mutual coupling coefficients
appear constant over the passband, then this stability condition is both
necessary and sufficient. Such a filter was designed into the active
terminations built by ZAI.

Under the assumption that a single stage narrowband filter is
in use, one can perform some insightful stability analysis. 1In Appendix F
a stability analysis is made with regard to a two element array.

Consider an example of a two element array of auxiliary antennas.
It is assumed that the first antenna is well matched to its transmission
line so that its self coupling, or return loss, is zero. It is also
assumed that the reflectivity and self coupling of the second antenna is
such that by itself it would be unstable, i.e., Re[mzzpz] > 1. It is
shown in Appendix F under certain conditions, Re[mzzpz] < 2, that an appro-
priate choice of pl will stabilize the array.

The most general stability criterion is obtained from (16, p. 376].
Assume that the mutual coupling matrix M+(s) is known as a function of
complex frequency, s. 1In particular, that each entry of M+(s) is a rational

polynomial in s. Similarly, assume that the diagonal entries of P+(s) are
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rational polynomials in s. Let the polynomial A(s) be the least common
denominator of all the minors of all ordersl of M+(s)P+(s). Then the arrav
—- is stable if and only if detI - M+(“)P+(“)] ¥ 0 and the polynomial
A(s)det[1 - M}(s)P+(s)] has no right half plane zeros.
In Appendix E, it is shown from this general criterion, that if
f(s) is a single stage narrowband filter, then the necessary stability

condition, Re[ln] <1, is both necessary and sufficient.

1 A minor of the kth order is formed by taking the determinant of

all the elements common between k distinct rows and k distinct columns.
A minor of order 1 is an element. Minors of order n-1 are the minors
people are most acquainted with. These are formed by "blocking out"

n
() E
a row and a column and then taking the determinant. There are <fi> ,i
x S

. n\ _ n!
number of minors of the kth order, where (k> = KR T ° L
Note, A(s) is not necessarily the denominator of the determinant. Consider
the multivariate feedback represented by - }
1 -s .
(s+1) (s-1) (1l+s) 1
-
G(s) = 1 - Then detG(s) = progl but

(s-1) -1 - 1

A(s) = (s+1)(s-1) .

i
PPN Y ¢
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5.0 ADAPTIVE CONTROL OF PARASITIC ARRAY NULLS ~

For a parasitic array to be useful in practice, adaptive control
of the terminations or reflectivities must be employed. There are several
adaptive control algorithms and several ways of implementing each algorithm.
We shall discuss the gradient algorithm and various search and dither
algorithms and also possible methods of implementing each.

The gradient algorithm would be the fastest and probably achieve
deeper nulls. The gradient tells not only when to change, but also in
which direction. It will, however, use more hardware and cabling and may
require a training pilot signal.

There are several possible dither algorithms, some of them closely
related to the gradient algorithm and some more akin to a search algorithm.
Performance and hardware needs will vary greatly depending on the algorithm
and its implementation. The best compromise of performance over hardware
might be some kind of dither algorithm.

Search algorithms generally will be slower. They may achieve as
deep of nulls. Search algorithms, however, will require the least amount
of hardware and cabling. The only connections to the terminations needed

are DC control and power.

5.1 Least Mean Square Control of Active, Complex Terminations

In the search for an adaptive control algorithm of a compact
array, one might first ask why not take the outputs of the antennas and

put them into a conventional adaptive array combiner as in Figure 1. One

could use such a system, but there are a few drawbacks.

First, the practical variable RF weight has a high reflection
coefficient for much of its operating range. Such weights, unbuffered
with the strong mutual coupling of a compact array would have an unpredictable tj;i
and possibly uncontrollable effect on the array. To buffer the antennas from i:;
the weights, one would have to take a high degree of insertion loss or :
include active elements like an amplifier.

Second and more importantly, the mutual coupling can cause bliné

e,
S
et
e
TR SV

spots in the array pattern [19]. The effect of these blind spots might be

)
.
o

&

the array loses some degrees of freedom for jammers arriving from particular ;{}

okl

directions, or there might be some direction which is always nulled and the

- A
desired signal cannot be received from that direction. Note the effects of -9
these blind spots would be independent of the weight values, assuming the 1:
weights have been buffered. tf
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In a parasitic array, terminated in variable impedances, blind
spots due to the mutual coupling are not as great a problem. One has
control over them through the variable terminations. It is possible, as
was described in Section 4.1, that certain combinations of jammers can
cause the loss of a degree of freedom of operation, but for an array of

several elements this is highly unlikely.

5.2 Gradient Control

Adaptive control of a conventional array is a linear problem.
The change in the output of the array is proportional to the change in
any of the complex weights. Adaptive control of a parasitic array, how-
ever, is a nonlinear problem. How the array output changes with a change
in a reflectivity will depend not only on the current value of that
reflectivity, but also on the values of all the other reflectivities.

A generalization of the LMS algorithm for nonlinear problems
is the gradient control algorithm. The gradient control law for complex
variables is derived in Appendix G.2. The control law is stated in
Equation (Gl7). This control law is applied to adaptive control of
parasitic termination in Appendix G.3. The result is given in Equation
(G33) .

= - * (5.1
pn 2k Yo (an yn) )
T -1
—n Q =0
where @ =
n 1 - (m, +m TPQ_lm )
Po Moo * Ry o
0
T -1 :
0
= = 0 (z+m W E'n and e = 1 nth
or TP 1 ) -n o place
l-DO (moo+Eo Q Eo ’
0

The two expressions for an can be shown to be equivalent. The first is
more convenient for calculations. A physical understanding can be gleaned
more easily from the second form. Consider the factor anyn = Byo/Bpn. It is
the proportionality constant between a small change in pn and the resultant
change in yo. Let us assume a small change Apn, in,pn and see how it

changes Yo For the moment, also assume that po = 0 so there are no
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reflections off the main receiver. The change Apn in pn changes the upward

traveling wave (toward the antenna) reflected off the nth termination by

ynApn. This signal is coupled to the main antenna by the factor Do Thus
Yo changes by the amount mOnynApn' Let us write this as B, _nynAp . But

this is not the end of the story. The signal ynApn also couples to the
other antennas, changes their voltages, and this change couples to the main
antenna. One can consider the initial change of ynApn in the upward travel-
ing wave at the nth antenna as an initial change in the vector of upward
traveling voltages of gnynApn. This signal couples to the other auxiliary
antenna by the coupling matrix M. The initial vector of downward voltages
due to a change Ap in p is then Me y Ap . This is llke a change in Y-
The final change in the downward voltages, Y. is then Q Me ey Ap . This
signal gets reflected by P and coupled to the main antenna by m LI Thus
the change in YO due to the change in the auxiliary voltages caused by
the change in pn PQ ynApn. If we sum these two terms and diviae
by Apn, we obtain the numerator of the second expression for an.

If po # 0, this creates a feedback loop to the main antenna

through the self coupling m_ ., and the coupling to the auxiliaries EO'

00
The loop gain of this feedback is the sum of two terms. The first term,
from the self coupling, is pOmOO The second term takes the gain of the

reflectivities po and couples it to the auxiliaries by EO' As above, this
signal can be considered an initial signal and is turned into a final sig-

nal by Q-l. This final signal gets reflected by P and coupled back to

the main antenna again by EO' completing the loop. Thus the gain of the
. T -1 .. T -1
second loop is LN PQ Eopo. The total loop gain is po(m00 + n, 1 24) Eo).
We see that the denominator of an represents positive feedback with this
loop gain.
One might ask if the feedback loop is stable. It can be shown

with the formula for the determinant of a partitioned matrix (Identity A.1l0)

v
bl ndaadh

that this denominator is an eigenvalue of Q+ or equivalently the loop gain
is an eigenvalue of M+P+. The stability conditions for this loop are there-
fore a special case of the stability conditions described in Section 4.2.
Gradient control can be implemented with basically the same equip-
ment as L¥MS control, except a method of obtaining or calculating the factor

an is needed. A basic implementation is illustrated in Figure 15. Note the

5-3
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main antenna signal Yo must be sent to the control circuitry of each
auxiliary. Also note that an extra complex weight will probably be
needed to implement the multiplicative factor un, or an*, depending on
where it is placed.

In implementing gradient control in this manner, it is only
necessary to determine the phase of an. The amplitude of an appears
simply as a modification to the control loop gain k. Furthermore, small
errors in the estimation of the phase of an are not significant. Theo-
retically, the control loop will still work with up to 89° of phase error.
Phase errors manifest themselves by reducing the loop gain by a factor
of the cosine of the error. 1In practice, if one is not too concerned
with settling time, phase errors of up to 40o can be tolerated. All
this shows that whatever process is used to estimate the factor an, it
need not be extremely accurate.

Three methods of obtaining the factor an are presented. The
first method uses a pilot signal, close in frequency, sent out of the
main antenna. In appendix H, it is shown that such a pilot signal (with
the condition po = 0) will be received at the nth auxiliary antenna mul-
tiplied by the factor an. This is measured and then used to complete the
gradient algorithm. The second method is to determine all the mutual
coupling factors of the array over all frequencies as well as how the fil-
ter characteristics of the reflectivities vary over frequency. This in-
formation would be stored and used to digitally calculate the necessary
values of the an. These values would then be implemented with a digitally
controlled weight. The third method uses a dither to approximate an which
is then used in a gradient control system. This method also requires
po = 0, The description of this algorithm is included in this section be-
cause it implements gradient control as expressed in Equation (5.1).

Figure 16 illustrates an analog implementation of the pilot al-

gorithm with the factor an determined and applied by an adaptive weight. .
There are several points to make about this design. First, we give a de- v*
scription of the general operation. The reflectivity at the auxiliary ~-;J
antenna is implemented in polar form, as is currently being done on the
NRL test array. The phase control is obtained by reflecting the signal

off a variable reactance. The amplitude control is obtained with a bi-
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of the reactances while observing the receiver output responding to one or

more signals incident on the array. That is, the pattern was formed adaptively.
Some preliminary attempts were made to use the array in a deterministic manner
by using the theory developed by Harrington [6] to calculate the set of
reactance values that comes closest to synthesizing a given pattern. Using

a commercial RF oridge to measure the reactance value, the reactive termin-
ations were then djusted to have the corresponding calculated reactance.
However, the approximations in the theory and the inability to measure the
reactance values sufficiently accurately usually resulted in a measured

pattern that differed substantially from the desired pattern. Therefore,

we ended all efforts to use the array in a deterministic manner.

6.2 Experimental Measurements

The manual adaptation investigations were performed using two tech-
nigues to adjust the reactance values. In the first technique a single CW
source was installed approximately 70 m from the array. The center element
was connected to a HF receiver, tuned to the source, whose output was observed
on an oscilloscope. We then adjusted the six terminating reactances sequen-
tially and iteratively to produce a minimum in the receiver output. The
azimuthal antenna pattern was then measured. In Figure 22 we show a typical
pattern formed in this manner. There are two noteworthy features. First, a
sharp null has indeed been formed in the direction of the source, as desired,
that has a depth approximately 30 dB below the pattern main lobe, and that
has a width of about 10 degrees. The remainder of the pattern is relatively
featureless; except for the small dip near 240 degrees, the pattern away from
the null varies no more than 3 dB.

The second noteworthy feature is that the gain of the array in
azimuthal directions away from the null is, on the average, only 4.7 dB less
than the gain for a monopole resonant at 20 MHz. In the sector from 30
degrees to 180 degrees, the difference decreases to 2.4 dB. Hence, the
sensitivity of the array is nearly that of a monopole and does not suffer the
large degradation that one might expect from such a small array. Patterns
similar to Figure 10 (that is, an essentially omnidirectional pattern with a

notch in the direction of an incident signal) could be formed for an

incident signal of any bearing. - 4
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6.0 EXPERIMENTAL RESULTS WITH A PASSIVE REACTIVELY TERMINATED PARASITIC ARRAY

NRL has built an electrically small parasitic array for experimental
testing. At first the. elements of the array were terminated with only variable
reactances. Test results with these terminations are detailed in [2-5] and
are summarized here. Tests with active complex terminations are discussed

in Chapter 8.

6.1 Experimental Parasitic Array

A seven element array was fabricated and tested by NRL to evaluate
the pattern control achievable with reactively terminated parasitic arrays.
Figure 19 is a photograph of the array. This array has one central element
connected to a receiver and six parasitic elements. All elements are uniformly-
wound helices with a 5 cm diameter and an overall height of one meter. The
antennas are constructed to have a resonant frequency of about 20 MHz,
and the spacing between the central element and the surrounding parasitic
elements is 40 cm (0.027 A at 20 MHz). The top plate visible in Figure 19
is non-metallic and is solely for rigid support of the elements.

The electronically-controllable variable reactances are mounted in
the boxes at the base of each parasitic element. A schematic diagram of
the reactance is given in Figure 20. Continuous control of the reactance
termination is achieved by adjusting the bias voltage on a varactor diode;
the continuous control range mid-point is determined by the combination of the
series inductors switched into the reactance circuit. At the 20 MHz resonant
frequency of the elements, the terminating reactance can be varied over a
range from -450 ohms (capacitive) to +450 ohms (inductive).

The terminations shown in Figure 20 provide control only of the
phase of the incident waves reflected from a parasitic element. Amplitude
control, using variable attenuators alone or in conjunction with amplifiers,
had not yet been implemented in the array. There is a similarity between the
parasitic array described here and various "phase-only" adaptive arrays de-
scribed in the literature [22].

Measurements of the array antenna pattern were made at NRL's
Brandywine Antenna Range (see Figure 21). The antenna range includes a large
ground plane and a rotating platter for measuring the azimuthal radiation

pattern. All of the measurements reported here were made by manual adjustment

..
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accelerated xandom seaxch (GARS) algorithm is discussed in the
references [22]. A guided random search always has the possibility of
choosing a new point far away from the current operating region. At
first glance this aspect may seem a hinderance to convergence, but
because of this property a guided random search can only get

temporarily hung up at a local extrema.

o, .‘
t‘JJ‘,‘ L

Stale

1.7 g 4

5-15

. . i

et . c
Lo

S LIPS T ST ST |

. .

e T Tk e T

LA . WA A A




Pr—————" —

it may then go into a tracking mode.

We shall discuss two types of random search algorithms, the
random search and the guided random search. These algorithms are
somewhat akin to the exhaustive and guided univariate search algorithms
discussed above. We say somewhat because the guided random search is
not univariate.

The random search assigns a probability distribution to the
whole control space. It may be uniform or it may be shaped by certain
apriori information of the control system and/or the optimal point.

The algorithm then selects an operating point at random based on this
distribution and evaluates its PA. If the PA sastifies the threshold,
then it stops. Otherwise it obtains another randomly generated
operating point. Random search algorithms can be run with or without
replacement. In an algorithm with replacement the probability
distribution is unchanged from one trial to the next. In an algorithm
without replacement, if an operating point selected in a trial does
not pass the threshold test, then that point is removed from the control
space and the distribution is renormalized. If it is a continuous
distribution, théh a region around the point is removed. Generally,
one would want to use an algorithm without replacement unless the
system is not time-invariant over the time it takes to converge. The
random search without replacement is very much like the exhaustive
search, except the random search stops when it finds a satisfactory
operating point. It is conceivable, however, that the random search
would searxrch through all the points before finding the right one.

Just as the univariate and guided univariate searches were
attempts to expedite the exhaustive search, the guided random search
is an attempt to expedite the random search. 1In the guided random search
the probability distribution described above is used for the first trial.
To choose a point for a second trial a random direction from the first
point is selected. Then a random distance out in this direction is
selected from a distribution whose mean might be the interval used in
the guided univariate search above. After the second point, one now
squints the direction probabilities distribution either in the direction
of the second point or in the opposite direction, depending on whether
the PA was better or worse. One can also accelerate a guided random

search just as the guided univariate search was accelerated. A guided
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completed with it, etc. This algorithm has advantages over the ex-

haustive search. First, as the .algorithm procedes the output becomes

A e

< more and more minimized. We reap the benifits of previous computations .-
as we go along. Second, the algorithm converg:s faster, particularly

if the array is underconstrained. In practice, usually after several
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iterations negligible further increase in performance is observed. ;
This is the method NRL is currently using in their computer run adaptive .
algorithm.

A third search algorithm is the guided univariate. This al-
gorithm is the same as the univariate except an attempt is made to mini-
mize the number of operating points analyzed within each iteration. -
When the algorithm begins a new iteration of a control variable, a point,
a certain interval Away from current operating value is chogsen. If the
output at this;point is less than at the initial point, the algorithm ':;1

continues in this direction until the output stops decreasing. The L

algorithm then zeros in on the local optimal value of this variable.
If the output of the first guess was higher than at the initial point,
the algorithm continues in the opposite direction until the output stops

decreasing and then zexos in on the local optimum. A way to reduce the

numper of operating points evaluated is to make the step sizes between

the evaluated points variable. 1f a big change in the output was noticed

between the last two evaluations, then make a big step in the controu.i
variable. If only a small change was noticed, then make a small step.
This is called accelerating the algorithm. The guided univariate
search is a more complex algorithm than the univariate search, but it
will converge faster because fewer operating points are evaluated.

One problem that both the univariate search and the guided
univariate search have is that they can get hung up on a local minimum
of the output, or a local maximum of S/I. Random search algorithms
may temporarily get hung up on a local output minimum, but will
eventually find the global optimal operating point or at least a - 1
satisfactory operating point.

In all random search algorithms, one computes a performance
assessment (PA) statistic for each new operating point. In our case

thas might be the array output power (to be minimized) or the S/I (to - ﬁ

be maximixed). Whenever the algorithm finds a point for which the PA fia

is less than (if minimizing) or greater than (if maximizing) a j:;ﬂ

particular threshold, then the algorithm stops searching. If need be, '”;j
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* 5.4 Search Algorithms

Search algorithms attempt to search the control space for the
optimal operating point. Given the value of the function to be minimized
at the current operating point and the past history of the function at
previous operating points, a search algorithm makes a guess as to where
the optimal operating point might be. All search algorithms are sequential,
i.e., they choose an operating point, evaluate it and then choose another,
etc. Unless the evaluation and selection of operating points is done

manually, search algorithms must be implemented digitally.

An advantage of search algorithms is they require the minimal
amount of hardware of all the algorithms, neglecting the computer. Other
than the computer, they require only D.C. control lines to the termina-
tions and a signal to interference ratio (S/I) detector. There is no
need for correlators, adaptive control loops, pilots, or extra complex
weights. Furthermore, search algorithms, because of their digital im-
plementation, are more flexible. If one desires to modify the algorithm,
he need only change the computer program. The main disadvantage of
search algorithms is that they tend to be slow.

There are many types of search algorithms. We shall describe
several here. The simplest in theory is the exhaustive search algorithm.
In this algorithm every operating point is analyzed. The one which gives
optimal performance is noted and then applied. In most systems the num-
ber of possible operating points is too great for this algorithm to be
practical. This is the case here. Consider an ﬁrray two complex ter-
minations controlled by two 8 bit signals each. Thus the number of oper-
ating points to evaluate is 28 raised to the fourth power. This is 232 or

approximately 4 x 109. If we could evaluate an operating point every

micro-second, it would take over an hour to evaluate them all. The one o
advantage of the exhaustive search is that it will always select the fﬁ:}
optimal operating point.

A second type of search algorithm is the univariate search -
algorithm. In the univariate search one of the control variables is selected.
An exhaustive search is conducted upon this variable along with all the

other variables held constant. The value of this variable which gave jﬁ"

o

Rk L
. e

gt g gt gt

the minimum output (or maximum S/I) over its range is then applied to -

it. A second variable is then selected and a similar procedure is

. T
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5.3 Dither Algorithms

Most dither algorithms attempt to measure the partial derivative
o of the function to be minimized with respect to some other variable of the
system. The measurement procedure of the partial derivative is taken
straight from the definition of the partial derivative: the ratio of a
emall change in output to the small change in the input that caused it.
' A particular variable of the system is "dithered" about its present value
with a small amplitude A.C. signal, e.g. a sine wave, square wave, or PN
coded signal. The output signal, or the signal to minimized, is correlated
with the A.C. signal. The correlator output is the partial derivative.
The distinction being made here between dither algorithms and gradient

hl

algorithms is that a gradient algorithm uses a coherent (i.e. inphase and
quadrature) correlator, while a dither algorithm simplex detect the
change in the afray output power.

‘ The dither algorithm can be implemented in an analog or digital
manner. In an analog implementation the introduction of the A.C. dither
signal and correlation with the output would be accomplished with analog
components. The subsequent adjustment of the undithered value of the control

variable could also be accomplished with analog circuitry driven by the

correlator outputs. In a digital implementation the dither of the control
variable and measurement of the change in the output could all be accomplished
and controlled digitally. For example if the control variable is a digitally
controlled weight, the dither could be implemented by alternating between

. IR

to adjacent settings.

Consider the case where the various control variables are dithered
individually and then all variables are changed simultaneously to new values.
; The amount that each variable is changed@ is proportional to the amount the

output changed during the dither for that variable, i.e. the correlator
output. Such an algorithm implements sequential gradient control.
The advantage of dither algorithms over gradient algorithms is
» the reduction in the amount and complexity of the analog hardware. In
fact, besides the variable weights, a dither algorithm could be implemented
with a computer, a power detector, an A/D convertor, and 2xN D/A convertors,

The cost for this reduction in hardware is an increase in the adaption time

i for the array and under some conditions less mull depth. 1In a changing

. S RF environment the array may never completely adapt.
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measurement errors get compounded into significant final errors by the many
mathematical operations of the computation. Here again the limitation is ‘
more severe in a larger array where there will be more operations in the L
calculation.

A third implementation of the gradient algorithm is a cross be- )
tween a gradient algorithm and a dither algorithm. The algorithm is based *?

on the following derivative .

’. —2 =e Q m,y, - @ (p=0)* ¥, (5.2)

t; forn=1, ..., N. .

1 These derivatives are derived in a manner similar to that used to derive

t ayo/apn. The derivatives are approximated by dithering po about p0 = 0 -
‘ and monitoring the changes in Y, - A design for an implementation of this .
method is given in Figure 17. The reflectivity po is dithered by alternately '_

terminating the appropriate port on the directional coupler with a short and

s open circuit. The remaining circuitry is similar to that used in the pilot )
implementation to estimate an. The dither basically replaces the pilot —
signal. The advantage of this method is that one dither signal allows N

the calculation of all the gradient law constants, an. There is no need for

multiple, mutually orthogonal dither signals. i
One possible disadvantage to this method is that dithered components -

of the desired signal may enter the receiver. For some combinations of desired

signal modulation and dither signal this may corrupt reception. If the

frequency of the fundamental component of the dither signal is greater than

the information bandwidth of the signal than this distortion will be minimal.

If the amount of distortion is too great an extra adaptive loop at the main

antenna can be used as in Figure 18. This loop will cancel the dither

component that might enter the receiver. The adaption of this loop can

proceed concurrently with that of the array, but will fully adapt only

after the array has acquired. The adaption of the array, however, can

proceed completely independently of this main antenna loop (assuming po = 0).
The gradient can also be obtained by measuring the individual

partial derivatives directly. Most dither algorithms take something of this

approach. These algorithms are discussed in the next section.
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polar attenuator in the return path of this reflected signal. The factor
an necessary for the gradient algorithm is implemented by multiplying the
main antenna signal, yo, by an* before the correlators that drive the com-
pPlex reflectivity. This is exactly what is illustrated in Figure 15,
except now the reflectivity is implemented in polar form. Note for a polar
weight the reference signal for the correlator must come from a point after

the variable phase control.

In the design of Figure 16 a second adaptive complex weight is used
to both determine an (actually a;) and multiply yo by it. This is done
simultaneously because the input to the weight is a sum of the two signals, yo

; .and yP. The weight and its control are structured so that the weight value
needed for yp to cancel the signal an yp from the nth auxiliary is the
weight value de;ired applied to yo before the correlators of the complex

reflectivity. This weight value is u;. Note the combiner after the

weights, w_ and w
I Q . Q
signal out of the combiner is w (yo + yp) where w = wo + jwq. In order

for the signal un yp to be cancelled in the combiner, w* must equal an.

, invert the signal from w. before adding. This means the

The adaptive control therefore drives w = a;. Two types of tunable filters
are used in the design. These filters are needed to keep undesired signals
out of the correlators. TFl rejects yp, and TF2 rejects Y, °or Yo- Note
quadrature hybrids are generally considerably more expensive than power
splitters and an effort has been made to use as few as possible.

The second method of implementing gradient control uses a

computer. It is assumed that all the coupling parameters of the array have
been measured over all the desired frequencies. From these parameters and
the known or measurable reflectivity one can digitally compute the vector

Q m,- This is the vector of the an needed for gradient control (with po = 0).

— T

Orie can then use a programable complex weight to either multiply Yn by

a or to multiply Y, by each 0 * as in Figure 15. This method would work
particularly well when the reflectivities are digitally controlled as well.
The an are functions of the reflectivity values and when these values
change the an must be recomputed. Thus this method is limited by the speed

at which the an can be computed. As the size of the array increases the

Ty V'Tivv "
et
KRN .

computation time increases rapidly and this limitation becomes more

significant. A second limitation is the accuracy of the calculation. Small
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The second technique by which the reactance values were adjusted
Qg used a desired signal, in whose azimuthal direction a main lobe was requireq,

and one or more interference signals, in whose direction a pattern null was
required. The desired signal and the interference signals were slightly
offset in frequency (V1 kHz), so that they all fell within the 16 kHz band-
width of the receiver, but were separated sufficiently that a subsequent
narrow band filter (10 Hz bandwidth) could be tuned only to the desired signal.
By using a hard limiter between the receiver output and the narrow band
filter, the output of the narrow band filter was a voltage proportional to
the output signal-to-interference ratio (SIR), when SIR <<.1. This voltage '
was monitored, and the reactances were manually varied to maximize it.

Two examples of patterns produced in this manner are whown in Figures
23 and 24. In Figure 23 a desired signal was incident on the array at 0 degrees
and two strong interferers were incident at 180 degrees and 252 degrees. )

After the adjustment of the reactances, I. and I_ were decreased 28 4B and

26 dB, respectively, relative to the desiied sigial. The pattern in Figure
24 was generated during a series of measurements to investigate the minimum
angular separation necessary to resolve the desired signal from the interference. g
The interference was separated 20 degrees from the desired signal and was -
suppressed by 24 dB relative to the signal.

The array and the variables terminations were also interfaced with
a PDP-11 computer to allow automatic control by the computer. The control }
algorithm was a univariate search (see Section 5.4). The automatically
controlled array formed nulls like those with manual control. A tracking
program was also written and implemented with the computer. This allowed
the array to maintain cancellation of one or more jammes as the platform was '
slowly rotated, representing a changing signal environment. Results of the

computer controlled array are described in [4,5].
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7.0 DEVELOPMENT BY ZA OF ACTIVE CONTROLLABLE COMPLEX TERMINATIONS

- 7.1 Design

-

In designing the active variable complex termination, two
grouhd rules were established. These ground rules were established to
? make interfacing with the current array easier, make any necessary debugging
' and testing of the terminations or array easier, and to increase the flexi-

bility in array configurations. These ground rules were: 1) that the
terminations should use the existing variable reactances as variable phase
shifters and 2) that the "loop” of the reflectivity be easily opened. A
E block diagram in Figure 25 illustrates the design used. The termination was
assembled in three separate small aluminum boxes in order to meet the ground
rules established.

A signal is captured by the antenna and is transferred to the load
by the matching network. The matching network need not be ideal over all
frequencies but it should be good enough to prevent the reverse signal of
the mismatch from dominating the reflectivity., After the matching network
is a two-way splitter-combiner. This device is being used as a three-port
circulator (even though it has 3 dAB loss each way). The forward flowing
signal enters both the upper and lower paths (in Figure 25), but is blocked
by the isolation amplifier in the lower path. In the upper path, the signal
receives some amplification and then enters another two-way splitter-combiner
again acting as a 3-port circulator. Coming out of the splitter-combiner the
signal is reflected off the variable reactance to vary the phase for phase
control. The reverse flowing signal reenters the splitter-combiner and

enters both the upper and lower paths. In the upper path it is stopped

by the isolation amplifier. 1In the lower path it passes through a bipolar

amplitude modulator for amplitude control and then is amplified. The signal

is then narrowband filtered and returned to the first splitter-combiner,

which sends it out the antenna again through the matching network.
Ther termination comprises three boxes: the antenna interface box,

the amplitude control box and the phase control box. A complete schematic

of the antenna interface box and the amplitude control box is given in
Figure 26. The antenna interface box is simply a four to one broadband

transformer (16 to 1 impedance convertor) and a two~way splitter-combiner.
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The transformer attempts to match the real part of the antenna impedance to

- 50f}. The splitter-combiner is included in the antenna interface box so that

. the "loop" of reflectivity may be opened 'for analysis and testing. A 2 dB
attenuator is included between the transformer and the splitter-combiner to
improve the impedance match the splitter-combiner sees. The power loss is
not a problem because of the gain within the termination.

Upon exiting the splitter-combiner the signal also exits the antenna
interface box. Before entering the amplitude control box the signal is
passed through a manually variable attenuator that varies from 0 to 25 dB
and is mounted on the side of the amplitude control box. The attenuator is
bidirectional so either port can be used for input. The attenuator will
account for variations in the strength of the antenna mutual coupling in
different array configurations. For a given array configuration the
attenuator is set so the array is usually stable. (Remember in Section
4.2 it was shown that an unstable array can often be stabilized if an extra
degree of freedom is available in the control space.) For a given con-
figuration this attenuation need not be changed. 1In practice the correct
value of attenuation would be built into the termination.

The signal now enters the amplitude control box. It first passes
through a 32 MHz lowpass filter to reject out-of-band signals. Then the
signal passes through an MWA-130 amplifier for both gain and reverse signal
isolation. After the amplifier the signal is sent to the phase control box
via a splitter-combiner and a 3 dB pad to improve the impedance match
seen by the splitter-combiner.

The signal is reflected off the variable reactance and it reenters
the amplitude control box, passing again through the 3 dB pad and into
the splitter-combiner. The signal is then amplified by another MwA-130
amplifier. After the amplifier the signal passes through a 2 dB pad and
then into a Mini~Circuits PAS-3 bipolar variable attenuator.

The D.C. control for the variable attenuator comes from the
computer and should be sent to the amplitude control box through a twisted
pair of wires (or like means) to reduce the effect of RF pickup. The control
signal is received differentially inside the amplitude control box and then
sent through a linearization circuit to account for the nonlinear diode
effects of the PAS-3. This circuit improves the linearity between the
RF amplitude out of the PAS-3 to the applied D.C. control voltage.
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The output of the linearization circuit is sent to the PAS-3 through
a relay. The relay is controlled externally to enable or disable the
termination. If +15v is connected to the relay control line, the relay
will energize and allow the control of the variable attenuator to pass
through. If the relay control line is open circuited or grounded then the
output of the linearization circuit is open circuited and the control line
to the attenuator is grounded. This causes the attenuator to apply
maximum attenuation so virtually no signal passes through. This disables
both amplitude and phase control becaues the phase control preceeds the
attenuator.

Following the attenuator is a final MWA-130 amplifier, which is
followed by a tunable narrowband filter. The filter is composed of a
series inductor and variable capacitor. With the current component values
the center frequency of the narrowband filter can be varied from 12 to
23 MHz with a constant 3 dB bandwidth of about 900 KHz.

After the narrowband filter the signal is returned to the antenna
through the first splitter-combiner and the matching network.

Let us now conduct a gain analysis of the reflectivity loop. The
termination was designed so that, with minimum attenuation in both the
manually variable attenuator and the electronically variable bipolar
attenuator, the gain of the signal returned to the antenna would be 10 GB.

Figure 27 details the gains and losses of the termination in this situation.

Note to get the desired amount of gain two MWA-130 amplifiers were not
sufficient so three were used. This necessitated the distribution of extra ::;;f
attenuation throughout the termination. This distributed attenuation was :A

also desired to improve the impedance match between the various components. ':5:€

Finally one must consider the problem of added noise. The R

P

added noise comes mainly from the MWA-130 amplifiers. These amplifiers
have a noise figure of 7 dB. Consider first the configuration discussed
above, i.e. that of minimum attenuation. The termination looks like a

a gain of 10 amplifier. Using the 7 dB noise figure for the amplifiers, one

b

. o
o « ,

ot iadcndndh

finds the termination (with 10 dB gain) has a 15 dB noise figure overall.

This noise figure for the termination is not constant over all control
settings. It is probably more instructive to look at the noise power inde-

pendent of the signal. Note the output noise power will be independent of

the manually variable attenuator. The output noise power will vary with
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the electronic bipolar attenuator. The maximum output noise will be when
the electronic attenuator has minimum attenuation, for which the cutput
noise is 25 dB above thermal noise. The minimum output noise will be when
the electronic attenuator has maximum attenuation. Then the output noise
comes totally from the last amplifier and appears at the output 13 dB
above thermal.

7.2 Laborxatory Experimental Data

In the laboratory at Z-A three experiments were conducted on the
amplitude control box of the active termination. These experiments
determined dynamic range, verified simple phase control, and determined the
bandwidth of the amplitude control.

The setup for the dynamic range experiment is given in Figure 28.
The control voltage v, was varied for minimum and maximum attenuation of the
RF signal. Minimum attenuation occurs when vc = Ov or +10v (in the picture
v, = +10v) . Maximum attenuation occurs when vc'= +5v. The pictures of
Figure 29a and b show a dynamic range ox 83 dB.

The phase control experiment is diagramed in Figure 30. 1In the
experiment the reactance port was alternately open then short circuitead.

The photos in Figure 3la and b show the results. We see that the output
does indeed shift by 180° as expected.

The experiment to determine the bandwidth of the amplitude control
is diagramed in Figure 32. Four tests were run. Control signals of sine
waves and square waves were used, each at 1 KHz and 40 KHz. The results of

these tests are given in the photos of Figures 33 and 34. 1In Figure 33a

a control signal of 1 KHz sine wave is used and in Figure 33b a control signal
of 1 KHz square wave is used. 1In each of the photos the low frequency control
signal is superimposed on the resultant RF output signal.

The feature to note in Figure 33a is that the zero crossings of the
control signal and of the RF modulation occur together. Thus, at a control )
frequency of 1 KHz, group delay is not significant. In Figure 33b, the -
important feature is the nonlinear relationship shown between the control :

voltage and the resultant RF amplitude modulation, in particular the soft
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limiting nature of the relationship.

LTt
‘ LT
Y
PO )

Vata it e el e
P U R, c AT e L, -




MR/ ENENCI

I I T '}

Lipas 2o 4

- 9

m dniag 3sa] abuey otweulq gz aInbra 1

T

3

...

.. Xod

o— sabextTo

e 3TOA TOMINOD

., o TOox3U0D

F A, | epnaTTdUy JAALITINY

" TeTriuaxazyTd

x3zk1euy
umz3oads o_o
™~
3x0d ux no
asueloeay e | Jq
u..nsouﬁnv—

ﬁ uado A @ 22IN0S

- ZHHW 8T 3® '

agp 01~

r o




1 10d8/:  '+20dBm

© | 300KHZ RES | SMHZ |

a) Minimum Attenuation

1 10d8/° =30d8m

i - e e ———

| 3o0kHz

| L - — —— —_—

b) Maximum Attenuation
{note scale change)

R 4

Figure 29 Dynamic Range Test Results
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Figure 31 Phase Control Test Results
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Figure 33 Amplitude Control Bandwidth Test Results
wilv 1 KHz Control Signal




a) Sine Wave

b) Square Wave

Figure 34 Amplitude Control Bandwidth Test Results with 40 KHz
Control Signal (note shift in time scale from Figure 33)




In Figure 34a one notices that the sine wave control ;ignal and
the resultant RF amplitude modulation are 45° apart. In particular, the
modulation lags the control by 45°. Thus 40 KHz must be the 3 dB band-
width of the amplitude control system.

7.3 Experimental Results of Parasitic Array with Active Complex Terminations

Zeger-Abrams built for NRL four active terminations as described
in the previous two sections. The first termination was delivered to NRL
in June 1982. At this time it was demonstrated that in a small,.closély
coupled, two element array, a single active termination on one of the elements
can effectively form a null in a desired direction. Figure 35 shows the
adapted pattern in one such case.

The remaining three active terminations were delivered to NRL
later in 1982, Work at NRL has been ongoing to fully determine the

capabilities of active terminations in arrays with more than 2 elements.
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8.0 DEVELOPMENT OF A CONTROL ALGORITHM FOR ACTIVE TERMINATIONS

An algorithm is proposed hexre for control of an actively terminated
parasitic array to find a stable null. This algorithm is a modification to
the univariate search algorithm currently used by NRL. The algorithm
presumes the use of oscillation, or instability, detectors as described
in Section 8.1. These detectors are minor modifications to the active
termination:design given in Chapter 7 and would be incorporated into each
active termination. The algorithm also presumes the use of a performance
assessment indicator (PAI), possibly a signal to interference ratio detector.
An improved version of the current detector used by NRL is given in the
following chapter.

The algorithm searches for a stable null by restricting its
search to that region of the control space for which the array is stable.

The stability criterion of Chapter 4 (Re [all eigenvalues of M+P+] <1l) is

difficult to apply in practice, because M+P+ is hard to measure and finding
the eigenvalues is an involved computation. This is where the oscillation

detector comes of use. It allows us to:. find the stable region of the

control space without knowing M+P+ or its eigenvalues.

8.1 Oscillation Detector (Unstable States)

The oscillation detector is based on the following principle:
the final amplifier in at least one of the active terminations will saturate
when the array goes unstable (starts to oscillate at some frequency).
This fact, along with the knowledée that the signals encountered in normal
operation (interference or desired) should not saturate this amplifier,

allows us to detect when an array is unstable. We can detect an unstable

array by noting when any of these final amplifiers saturate.

Figure 36 shows a modification to the design of the active
termination of Figure 26. This modification detects when the peak amplitude
of the MWA-130 output RF crosses a certain threshold. The op amp is =
configured as a comparator. The 1.4 Ml feedback resistor provides positive e
feedback for hysteresis to prevent chatter. The op amp is one of two ijt
unused op amps currently within the termination. Laboratory experiments ::3-
have determined that when the op amp threshold is set for l1l.4v, the T.'*
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output RF is +15 dBm. We selected to trip the threshold with +15 dBm output
of the MWA amplifier, because this is higher than any expected operatioral
signal (interference or desired) and yet slightly less than the saturation
point of the amplifier (its 1 dB compression point is +18 dBm). With

the threshold set in this manner, we can detect when the array is near
oscillation but the MWA-130 is still linear. The output of the op amp is
+15v if no oscillation is present and -15v if an oscillation is present.

If an inverted output is desired, the final unused op amp can be employed

to invert this gignal. In practice, eight of these signals would probably
be combined to represent one 1/0 byte to the computer.

Finally, if it is found that the detector will trigger on oper-
ational signals (in particular strong interferences) and not just on
oscillations, one can obtain some extra operating signal range with some
modifications. First, one may raise the threshold of the comparator
slightly. Secondly, the 2 dB pad and the splitter-combiner within the
antenna interface box can be replaced with a 10 dB directional coupler. In
this case the ports on the antenna interface box will no longer be symmetric.
The antenna is connected to the IN port of the directional coupler
(through the matching transformer). The COUPLED port of the coupler is
output to the termination. The OUT port of the coupler is the return
signal from the tarminatién. In this configuration, one gains about 4 dB

more range for operating signals. The sacrifice is a corresponding increase

in added noise.

8.2 Modified Univariate Search Algorithm

The simplest way to control the active terminations will be to
modify the current algorithm, which is a univariate search. The simplest
modification of all is to conduct the univariate search as before; however,
consider only those operating points for which no termination is oscillating.
More specifically, while ramping one of the control variables (either
amplitude or phase) and just before evaluating the performance assessment
indicator (PAl) for each new operating point, one checks to see if any
of the terminations are oscillating. If an oscillation is present in any
of the terminations, then this operating point is rejected (without bothering
to check the PAI) just as if its PAI had been insufficient. Upon reaching

a null, the same process of checking for oscillations is continued even
in tracking mode.

R L S T SO
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Y

The main advantage of this algorithm is its ease of implemen-
tation. The main disadvantage is inherent to the univariate search
algorithm, namely, it is slow. However, the current algorithm use two
different step sizes for when it varies the control signal. A large
step size when cancellation is poor and a small step size for fine tuning
2 null. This arrangement greatly reduces the number of operating points
evaluated.while cancellation is still poor and greatly speeds up the
algorithm; Thus it is felt that more speed is mot essential to the current
experiments with parasitic arrays.

A second possible problem with this algorithm, which also is a
possible problem with any non-random algorithm, is that it may get hung
up at a local minimum which is not an adequate null. This is only called a
possible problem because it becomes unlikely with excess degrees of freedom in
the array, i.e., when there are more actively terminated elements than there are
interferences to be nulled. It should be noted that it may be desirable
to have more than one excess degree of freedom. Excess degrees of freedoms
may also be used to stabilize an otherwise unstable array. Finally, if
the array still forms an inadequate null, even with the extra degrees of
freedom, the current algorithm will recognize this and start over from a

new location which hopefully will lead to a suitable null.
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9.0 DEVELOPMENT OF AN IMPROVED PERFORMANCE. ASSESSMENT INDICATOR (PAI)

Every control algorithm needs some method to evaluate the current
utility of the system being controlled. The device which does the evaluating
is the performance assessment indicator (PAI). For a conventional adaptive
array with IMS control the PAI is simply the array error signal which one
then tries to minimize. For an SIC the usual PAI is the signal to inter-
ference ratio at the array output (to be maximized).

In designing a PAI for the current experimental array, working
at an IF frequency would greatly ease the complexity of the circuit. Since
the current PAI for the array uses a Watkins-Johnson WJ8718 receiver, it
was felt that the same receiver should be incorporated into the new design.
Figure 37 Bhows a basic design of a PAI using the WJ8718 receiver. The
main antenna is connected to receiver through an antenna matching network
(possibly as simple as a transformer). The receiver is set up to convert
the signal to a 455 KHz IF with 16 KHz bandwidth. At an IF, the operation
of the signal-interference discriminator is greatly simplified.

One may ask: since the discriminator separates the desired
signal from the interference, why have an adaptive array at all? The problem
is that the discriminator is not a perfect separator. The discriminatox
gimply uses some feature of the desired signal which distinguishes it from
the interference and then produces two outputs such that one of the outputs
looks more like the signal and less like the interference than the other.
The amount of discrimination is far from enough to allow one to attach a
receiver to the desired signal port but is enough to control an adaptive
array.

The two signals out of the discriminator are each sent through
detectors, either power or peak detectors. The outputs of these detectors
are D.C. signals which are then each input to a log ratio amp. A log ratio
amp outputs a voltage proporticnal to the logarithm of the ratio of the two
inputs. 1In this case the output is an attempt at measuring SIR in dB.

The key element of this design is the discriminator. Three types
of signal discriminators will be introduced. The recommended type will

be described in detail. Tne three different signal-interference discriminants
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are: 1) the signal and jammer are narrowband (or even CW) and slightly
separated in frequency, 2) the signal is modulated with a psuedo-noise (PN)
sequence and the jammer can be arbitrary, and 3) the signal is narrowband
(doublesided bandwidth < 6 KHz) and the jammer is wideband.

The jammer-signal environment required for the type 1) discrim-
inator is really a fairly benign environment. It is not likely to be the
jammer-signal enviromment encountered in practice. This discriminator
would be used only with experimental arrays to demonstrate nulling capabilities.
This discriminator would typically be composed of two narrowband filters;
however with a single notch filter (at the desired signal frequency) one
could use the same technique as described below for the type 3) discriminator.

Type 2) discriminator has the advantage of working against
any jammer that is uncorrelated with the PN sequence. The total signal
going into the discriminator is split into two paths. Both paths are
multiplied by the PN sequence. One path (the signal path) then passes
through a narrowband filter at the IF frequency. The other path (the
interference path) is passed through a notch filter at the IF frequency.

e outputs of these filters are then sent to detectors as in Figure 37.
The disadvantages with the PN discriminator are the increased hardware
complexity and the need to synchronize to the PN sequence of the desired
signal (which will have come from a distant transmitter in practice).

The type 3) discriminator is the type recommended. It requiias
little more hardware than the type 1) and may be employed against a far
greater variety of jammers. In fact, it can be used anytime type 1) can
be used, as long as the frequency separation is wider than 3 KHz. The

type 3) discriminator assumes that the jammer has wider bandwidth than the

signal, or at least has a good fraction of its power out of this band. The

input signal (S + I) is split and one part is sent through a notch filter

at the IF frequency. The power remaining in this signal will be proportional

to the interference power. We now have two signals: one is S + I and )
the other representative of I. We would'like to have two signals such that

one is representative of 1 and the other of S alone. If we use the signals

e
PR IR R Y

I and S + 1 in the detectors of Figure 37, then the output of the log ratio )
amplifier will be log[(S + I)/I}. This output cannot be used for a PAI )

because if I >> S the output is =~ 0. The PAI will change little even for large
changes in I. T
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A.l4 If y is a scalar function of n variables, x,, arranged into a column

(row) vector 5_(5?), the expression
T
oy/3x (3y/3x")

denotes a column (row) vector with elements By/axi.

A.15 I1f y is a column vector with m elements, each a function of n
variables, X arranged into a row vector 5?, the expression 32/35?

denotes a matrix with m rows and n columns, with elements 8yi/3x

3

A.16 dUV/93x = (dU/3x)V + U(3V/3x)

T
. =E = e¢,e, where E is a matrix of all zeroes, except
A.17 /3y, 4 = By = 28y 13 '
for the i, j-th element which = 1; and e is a vector of all zeroes
except for the i-th element which = 1.
T T T T
A.18 3a x/3x = a and da' x/dx = a (1f the elements of a are not

functions of any xi).

A.19 JAx/3xT = A

A.20 Chain Rule: dy/3x’ = (3y/3z)(3z/3x)

A.21 oY Yax = -':r'l(zw/ax)\"1

"o
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.

This can be verified by multiplying A and A-l and showing that the
result reduces to the identity.

A.10 Determinant of a partitioned Matrix given:

B . C
A=| ..ote.. and
D ! E
then |A]| = |E|+](B - CE-lD)| if E_1 exists,
-1 -1
and = |B|*|(E - DB” C)| if B exists.

MATRIX DIFFERENTIATION FORMULAE

A.11 If the elements of a matrix Y(m x n) are functions of a scalar, x,
the expression
9Y/ox

denotes a matrix of order (m x n) with elements Byij/ax.
A.12 If the elements of a column (row) vector]z_(x?) are functions of a

scalar, x, the expression

ay/ax  (3Y /3x) .

denotes a column (row) vector with elements ayi/ax.

A.13 1f y is a scalar function of m x n variables, x

Y

1y’ arranged into a

matrix, X, the expression

ay/ X a2

denotes a matrix with elements 3dy/ox T
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A6 If (A+ B)—l exists, then ABT is symmetric (i.e., ABT - (ABT)T)

if and only 1if (A + B)-I(A - B) is symmetric.

proof of "if":
@+B) -8 = [(a+Bta-8]T « @ -33H@aT+H!
(a-B@AT+8) = (a+p@f-3"

AAT - BAT + BT - BBT = AT + BAT - ABT - BB

ABT - BAT - (ABT)T

T

proof of "only if": Reverse the above argument.

A.5 If (A+B)"! exists, then A'B is symmetric if and only if
(A-B)(A+ B)-1 is symmetric.
This can be proved with minor variations to the proof of (A.4).

A.6 If (A + B)-1 exists, then:
(A—B)(A+B)—l - (A+B+2B)(A+B)-1 = I - 2B(A + B)
1

1

2B(A + B)’1 = I - (A-B)(A+B)

A.7 If (A + B) ! exists, then:
A-BA+B) ! = [a-@a+B)la+s! = 2aa+8 -1

or 24 +8)) = 1+ (a-B)a+B)!

The following two identities and the matrix differentiation
formulae are taken from CRC, Standard Mathematical Tables.

A.8 Given A= B + UV, where A and B are n xn, U isn xp, V is p x n,
and l?a-1 exist, then:
At o= BBl + vl Tl
This can be verified by multiplying A and A-l and showing that
the result reduces to the identity.

A.9 Formula for inverting a partitioned matrix. Given:

B.C
A = c*:**), where Ais (p+q) x(p+4q), Bis p xp,
D .,E

Cispxgq, Dis q xp, E 18 q x q, and B-1 and E—l exist, then:

.................
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APPENDIX A

MATRIX IDENTITIES AND DIFFERENTIATION FORMULAE

Identities (A.l) through (A.7) are specialized identities
found to be useful in the text. They are given with proof. Identities
(A.8) and (A.9) and the differentiation formulae are taken from CRC,
Standard Mathematical Tables, 21st Edition [12], pp. 125-136.

MATRIX IDENTITIES

In Identities (A.l) through (A.8), A and B are square
matrices.

A.1 If A"l exists, then A 'B = BA™! 1f and only if AB = BA.

proof of "if":

AB = BA
alama™l = A"lpan”!
-1 -1

BA = A'B

proof of "only 1if'":

A"l - mal
s lBa = amala

BA = AB

A.2 (A-B)(A+B) = (A+B)(A-B) if and only if AB = BA.
proof of "only if":
(A -B)(A+ B)

(A +B)(A-B)

A - Ba+ a8 - 82 = A% +BA - aB - B? |
-BA+ AB = BA - AB .
AB = BA

proof of "if": Reverse the above argument.

A.3 If (A+B) ! exists, then (A +B) }(A - B) = (A - B)(A + B)~
if and only 1f AB = BA.
proof: Apply (A.l) to (A.2).
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jammer is of a wider bandwidth than the signal, or at least contains
significant energy outside the signal bandwidth of 3 KHz of the center
frequency. This also works as the same discriminant that NRL has -
currently been using (namely frequency separation) although at a somewhat
greater frequency difference (3 KHz instead of 1 KHz). The final statistic
that drives the array is basically log[(s + I)/IY] where Y > 1. The
optimum value of Y is probably between 1.5 and 2.

Zegex—-Abrams developed a new model for analysis of a parasitic
array, particularly useful for analysis of active terminations and adaptive
control. Zeger-Abrams developed active terminations to be used with a
compact parasitic array at HF and developed circuitry and an algorithm for
their control. Finally, Zeger-Abrams developed an improved PAI circuit
to drive an adaptive parasitic array. Possible areas for future development
and improvement include: 1) improvements in array stability through
improvements in the design of the elements, the terminations, and the
algorithm, 2) analytic studies of the array performance that include
noise and studies of combining the element ocutputs in the manner of a
conventional array, 3) further improvements in design of a PAI, and

4) the study and design of improved control algorithms.
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10.0 SUMMARY AND CONCLUSIONS N

The parasitic array is a promising method of building an adaptive
array in a small package., This is a particularly appealing prospect at
HF, where a conventional array would be measured in 100's of feet or
even 100's yafds.

The theoxry of an adaptive parasitic array was presented with
emphasis on active terminations. Two theoretical models of a parasitic
array were discussed, the impedance model and the transmission line
model. The array was described in terms of both models and then the
relationship between the models was established, should one wish to
transform from one model to the other. With this relationship established,
we used the transmission line model throughout the remainder of the report.

' An explicit solution for the reflectivity values (of the
transmission line model) necessary to form nulls on jammers was derived.
The issue of stability for an actively terminated array was discussed.
The concept of degrees of freedom for the array was introduced. The
possibility of using excess degrees of freedom to stabilize the array was
demonstrated. Several ideas on how to make the array less likely to go
unstable where suggested.

Experimental results obtained in adaptive nulling with a passive
reactive parasitic array was reviewed. These results were'obtained at
HF on the NRL Brandywine Antenna Range with an array about one meter high
and a half meter in diameter.

Zeger-Abrams designed and built four active terminations for
the NRL array. Preliminary results of using these terminations in the
parasitic array were described.

As noted above, an actively terminated array may have stability
problems. Zeger-Abrams developed an instability detector (actually a
near-instability detector) to be used in conjunction with a control
algorithm. A simple modification to use this detector with the current
NRL computer control program was described.

Finally, in order to improve the performance of the NRL array,
Zeger-Abrams designed an improved performance assessment indicator (PAI)

that drives the adaptive control algorithm. This PAI assumes that the

10-1
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the output of the difference amp is the PAI statistic negated. If Vs + 1

is the output voltage of the upper log amp and vI is the output voltage

of the lower log amp, then the true output of the op amp difference ampli-
fier is 2(YVI - VS + 1
is determined by the 10K potentiometer. If the pot is set so there is a

). The gain of the lower {non-inverting) input

short circuit between the log amp output and the non-inverting terminal,
then the gain for the non-inverting signal is twice that of the inverting
signal, Y = 1. 1If the pot is set so the non-inverting terminal is shorted
to ground, then (quite obviously) the gain for the non-inverting signal

is zero, Y = 0. Finally, if it is desired that the PAI be positive going

for increasing S/I then one of the excess op amps can be used to invert it.

Several possible performance assessment indicators have been
discussed. The recommended PAI has been described in detail. A schematic

of the recommended design was presented in Figure 39.
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Table 1

Notch Filter Inductors Specifications

Inductor 2§p;::2::;: Numbex Wire Gauge
6.41 mH 160 32
5.71 mH 150 32
3.0 mH 110 32
1.85 mH _ 88 32
1.76 mH 75 32
45 uH 14 26
43.6 uH 13 26

All cores are Ferroxcube pot cores 1408C-A250-3B7,
which require the 1408F1D bobbin and 1408H hardware
set each.
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more. This is clearly impractical. To get the selectivity desired, it is

recommended that the signal at 455 KHz be converted to a lower IF — in parti-
cular 50 KHz. This could be accomplished by mixing with an LO at 505 KHz to
produce outputs at 50 KHz and 1.06 MHz (see Figure 39). The 1.06 MHz component
is then easily filtered out. The filtering is accomplished with a. third order

Butterworth lowpass filter with a cutoff at 70 KHz. This filter has less
than 1 dB loss at 50 KHz and ideally 70 dB loss at 1.06 MHz. The final
concern is the necessary stability of the 505 XHz LO. If the LO is in-

accurate then the desired signal is not centered in the notch and some power

may leak through the filter. This leak through power may corrupt the PAI
measurement and degrade the final achievable S/I. 100 Hz accuracy in the
ocsillator is felt sufficient to make this degradation negligible. 100 Hz
accuracy in a 505 KHz ocsillator corresponds to a frequency stability of
200 PPM or 0.02s.

The notch filter is a design previously used by Zeger-Abrams. It
had been built and tested and found to work very well. Table 1 gives
specifications for the inductors. It is suggested that several extra
windings be placed on each inductor and then resonate the inductor with a
known capacitance to "tweek" the inductance value.

The signal into the notch filter first goes through a voltage
divider. This lowers the input impedance seen by the filter and makes the
necessary inductors smaller. There also is a signal attenuation associated
with this divider, but the signal-to-noise ratio of the signal is assumed
to have been well established by the WJB8718 receiver and this is not deemed
a problem. The output op amp provides an infinite output impedance to the
filter and restores the gain lost in the input resistor divider.

The output of the notch filter as well as a sample of the input
signal are then sent to separate peak detectors. Since the signal levels
may be smaller than a diode voltage drop, it was necessary to use ideal
peak detectors. The RC network at the output of the op amp sets the fall
time constant of the peak detector. This time constant is currently set
for 1 ms.

The outputs of the peak detectors go into log amplifiers. The
outputs of the amplifiers are then sent into a difference amplifier to

form the PAI statistic log[(S + I)/IY] = log (S + I) - Ylog(I). Note

s e e o
PR PR o
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- Consider, however, the circuit diagramed in Fiugre 38. The output of
this circuit is log[(S + I)/I'), or equivalently log{(s + I)/I} - (Y - 1)log(I). -
t h For large I this becomes ~(Y - 1l)log(I). Since Yy > 1, this term becomes increas-
ingly more negative as I increases. Thus this circuit will function as a

useful PAI. There is a compromise to be made when using this circuit. When

1 >5Ss, we would want Y = 2 so that the control is driven by = -log(I). If -
Y were less, then we would be reducing the loop gain and increasing the time
it would take to reduce a large interference. However when S > I, we would
want Y = 1 so that the control is driven by = log(S/I). For larger Y, the
array seeks to reduce I with a single-mindedness that is counterproductive.
It will strive to reduce I even to the detriment of S/I. 1In particular, if
Y = 2, the array will reduce S/I by as much as 1 dB, in order to reduce I
by 1 dB. Note this is better than no desired signal maintainance at all as
one woula get by using -log(Il) alone as a PAI. It is thought that the
optimum value for Y is between 1,5 and 2. Finally, it may be possible to
make Y itself adaptive, although this is not recommended in the initial
implementation. One such variable Y might be Yy = 2 - f{log[(s + I)/I]}
where f ix} =x if x <1 and 1 if x > 1. Here log[(S + I)/I] would be
obtained by finding the difference of the log amp outputs before multiplying
by Y.

The block diagram in Fiqgure 38 is basically the recommended PAI
design. The critical part of the desgign is the notch filter. Analysis
shows that the maximum achievable signal-to-interference ratio out of the

array is the ratio of the input to output signal-to-interference ratios of
the notch filter, i.e.

(§j - £8/1) filter input
I) array (S/1) filter output.

Assuming one wants a maximum S/I output of the array to be at least 30 dB,
then one would want the desired signal rejection ratio of the notch filter
to be at least 30 dB without significantly reducing the nearby interference.

A notch filter with a 6 KHz 3 dB notch bandwidth at center frequency
of 455 KHz and sufficiently steep skirts to satisfy the above requirements

was considered. The design, however, required inductors with Q's of B00 and




APPENDIX B

RELATING S-PARAMETERS TO Z-PARAMETERS

For any N-port network there are two equivalent representations:
S (scattering)-parameters and Z (impedance)-parameters. Scattering para-
meters are defined in Equation (B5) and analyze the system through the
forward (incident) and reverse (reflected) voltage traveling waves.
Impedance parameters are defined in Equation (Bl) and analyze the system
through the port currents and voltages. This appendix derives the
relationship between these two represations.

Consider the N-port network in Figure B.1l, terminated with
transmission lines. Let 2 = [zij] be the open-circuit impedance matrix

for the network. The entries of this matrix are defined by

<

zZ,., = i
1 i i, =0, forallk #3 . (B1)
We define the vectors i and v
1 vy
i=f ' v={ . .
N N

From the definition of Z and superposition we see that

v=2Zji . (B2)

The transmission lines connected to the nth port has a characteristic

impedances of Zon-

0
zol
z, = t.,
L ]
0 zoN

e g e

-
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The voltage-current telegraph equations for each of the trans-
-— mission lines can be solved [14, 17, 18] to show that each voltage and T
current is the sum of two components: P

v = + v

n v(+)n

(-)n t‘. -_

0 l(+)n + i(—)n (B3)

and in vector form

]

v=yv + v

= =+ —(-)

i=i + i B4

L1 Y1 (84)
Here v(+)n and i(+)n are the forward voltage and current "waves" traveling
toward the N-port network and v and i are the reverse waves

(-)n {(~)n .
traveling away from the N-port. The scattering parameter matrix S = [sij]
is defined by

= (=)

M

s, .
ij .
v(+)k = 0, for all k # j. (B5)

From this definition and superposition, we see that

\_I_(__) = Sl(_._) . (B6) :_
It can also be shown from the telegraph equations that these traveling

waves are related by the following equations: -

V(+)n - - ?(—)n -2 .
*(+)n *(-)n on (B7)
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Substituting Equations B7 into B3 yields:

Yn " Vn Y Ven

i = V(+)n - MO

. Zon Zon (B8)
Upon solving Equation (B8) for v(+)n and v(_)n we obtain:

Vi#)n ~ b v * zonin)

Y(<yn =k (Vn - zonin) (B9)

and in vector form
Y+ =% (v +21)
v =% (v - z i) , (B10)

=(=)
Equation (B2) can be solved for i and substituted into Equation (BlO).

=k (I+ zoz'l)y_ (Bll.a)

=% (I - Zoz—l)y_ (B11.Db)

<
]

where I is the matrix identity

Equation (Bll.a) can be solved for v and substituted into Equation (Bll.b).

-1 <1,-1
Viey T T T ZE ) (L2 ) Ty, (B12)
By comparing Equation (B12) to (B6), we see that
-1 -1 -1
S-—(I-ZOZ)(I+Z°Z)
-1 -1 ]
=(2-2)2 " 2(z+2) o }
1 !
= (2 - zo) (z + zo) (B13)
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Using the matrix identies A.6 and A.7 of appendix A, we find the following

equivalent forms for S:

-1
I - 2zo (z + zo) (B14)

n
n

22 (2 + zo)'l -1 (B15)

Note if all the zon's are the same, then with the fact that 2
is symmetric, S must also be symmetric.

Finally, Equation (B13) can be solved for Z in terms of S and Zé‘

-1
S=(z-12,) (Z+2Z)
s(z + zo) = (2 - zo)
(I + S)Zo = (I ~ S)2
=1 -9"ta e s)z, (B16)
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APPENDIX C

SCATTERING PARAMETERS IN TERMINATED TRANSMISSION LINES

C.1 Single Transmission Line

Derivations of the theory used in this appendix are given in

[14, 18]. To solve transmission line problems one applies three rules:

1) v(x) = v(+)(x) + v(_)(x), i(x) = i(+)(x) + i(_)(x) and
v (X) v (x)
z(x) = zf+f1x) - - i(_)(x) are everywhere continuous, where x is

the distance along the transmission line.

1 + 8(x) z(x) -~ zo(x)

2) z(x) = zo(x) 1 - s(x) and s(x) =

z(x) + z _(x)
(o}

where zo(x) is the characteristic impedance at the point x.

ZA x> %
zo(X) = (z 0<x< §
zT x <0 .

z(x) is simply the impedance the transmission line could be
terminated with at the point x, and not change the load as seen

by the source.

)

j2B(x., ~ x
1l 0 s(xo) where § = w/vp and vp is the propa-

3) s(xl) = e
gation velocity of the transmission line. This is just the R
change in phase due to the change in position along the trans-
mission line. Note the change in phase is calculated from

twice the change in distance because it is a round trip.
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To apply these rules to the transmission line network in Figure

D A e e L et o i e e B e e e e e

- C.l, we start at the load, zA. Here z (+) = zA and therefore by
Rules 1 and 2
Z2(2-) T %o Za " % . (C1)
s(2-) = z + z - zZ_ + z
(2-) o
By Rule 3 we can "move" this reflection coefficient down the transmission
line. .
s(0+) = o 3282 s(2-) . (c2)
We can now compute z(0+) from Rule 2.
1+ e 3B S (g
z(0+) = z =Ty
l1-e -~ s (2-) (c3)
With the continuity of Rule 1, and the second equation of Rule 2 we obtain
s(0-) from Equation (C3).
s(04) = z(0+) - zT
z(0+) + z, (c4)
We can relate these variables to those used in Section 3.1 of the text.
EA = 2z(0) = z(0+) = z(0-)
By = s(2-)
QA = g(0+) = m
ST = s(0-)

In this section of the appendix, we would also like to show
v(+)(0-) =k vg. From the definition of traveling waves and characteristic
impedance we have:

v(0) = v(+)(0-) + v(_)(O-)
v (0-) v (0~)
. _ . oy~ (+) (-) (CS)
i(o) = 1(+)(0 ) + 1(_)(0 ) = zT zT
C-2
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But from Figure C.l, we see that

v =

zTi(O) + v(0)

(0-) = vy (0°) + v (0-) + v _,(0)

(0) (cé)

Vi+)

2

Vi+)

Finally, we would like to show that the model makes sense as
the length of the transmission line approaches zero, i.e., in the absence
of any line. In the absence of any transmission line, one would compute
the reflection coefficient of the antenna as seen by the source as
I'= (zA - zT)/(zA + ZT)' What needs to be shovm is that s(0-) approaches
I, as % -approaches 0. It is sufficient to show that as % approaches 0, then
z(0) approaches zA. for then by Rule 2 and the continuity of z(x), s(0-) will

be ' = (zA - zT)/(zA + zT). As £ approaches 0, then e-stz approaches 1 and

from Equation (C3) we can write

m gy o, [1 * s(z-)J

20 1 - s(-) (c7)

Note from Equation (Cl) that s(%-) does not depend on £. By combining
Equations (Cl) and (C7), we find the limit for z(0) as % approaches 0.

1+<ﬂ-%>
1lim z(0) z z_ + 2z
>0 o A o
L2 %
L ZA+ZO
J
zZ +2z + 2z -z
=z o o)
+ - +
Lz z zA z
=z 2z,
27
o
c-4
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C.2 Multiple Transmission Lines

In this section the results of the previous section are extended

for the case of N transmission lines terminated by an N+l port network
(see Figure C.2). First, let us define the following quantities to sim-
plify notation. In keeping with the text, we shall use the indices

0o, 1], ..., N.

p
xX= -
*N
Vo (x) Vo (4) (x4) Yo (=) (x4)
vix) = : r Y (x) : P Yy o= . '
Xy n () Un(-)
ng QO
v = . ’ L =
—g -
qu QN

S(x) matrix of s~parameters relating v, . (x) and v, .(x)

(+) (=)

The three rules stated in Section C.l are restated below for
multiple transmission lines. (In evaluating these or any following expression,
the components of x must be all in the same region, i.e., all in the

transmission lines, all in the load ZA’ or all in the termination.)

1) wvi(x), i(x) and Z(x) are all continuous in X, where

v(x) (x) + X(_)(X)r i(x) =i (x) + i | (x) and

(+) (=)
(x) = Z(x)i(+)(§)and

AT

Z(x)is defined by Yo
g(_)(g) = —z(x)11_)(§).
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2) 20 =11 -] (1 +5@]2 (X

and S(x) = [2(x) - Z_(0](2(x) + 2 ()] " where

z x., > L. for all i
i i
Z (x) =(2 0 <x, <, for all i
() i i
Z x.< 0 for all i
T i

A3) S(x)) = D(x; -~ x,) S(x)) D(x; = x,)

-—O
jB x

e ? ° 0

where D(x) = . 0 <x.,., x,.. <2, for all i,
- .. 38 x - T1i 0i — 1
0 e N N
w .
and B, = — for all i
1 v,

P

As in Section C.l, we start at the load ZA'

Z(%+)

ZA (c9)

Then from Rules 1 and 2 we can compute S(&-)

S(&-) !

]

[z(8=) -z (W) [z2(L) + 2 (V)

]

-1
lz, - ZO]IZA + zo] (C10)

By Rule 3, we can move this scattering matrix down the transmission lines

to x = O+.

S(0+) = D(4) S(&-) D(L) (C11)

From S(0+) and Rule 2, we can compute Z(0+).

Z(0+) = [1 - S(o+)]'1[1 + s(o+)]z0 (Cl12)
%
R
c-7 ,
g
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With Rule 2 one can obtain S(0-) since Z(0-) = Z(0+) from Rule 1.

Ss(0-) = [z(0+) - ZT] [z(0+) + Z,I,]-l {C13)

As in Appendix C.l, we can relate these variables to those used in the

text in Section 3.3.

EA = 2(0) = Z(0+) = Z(0-) (c14)
s, = S(&) (C15)
A = = 16
sA S (0+) M+ (C16)
S, = S(0-) (c17)

In the remaining portions of this appendix, several results
useful in the text will be derived. First, Equation (C6) of Appendix C.1

will be generalized for the N-port case. We have by definition

v(0)

(0-) + X(_)(O")

+)(O-) + i(_)(O—)

L+
Lo =
10) =1

By Rule 1, we also have

-1 (0-) +z_ v (0 S

0 =2, ¥y T Y

But from Figure C.2, where Xg is defined, we see that

Xg = ZTi(O) + v(0)
= X(+)(0‘) - 1(_)(0-) + l(+)(0—) + X(_)(O')
= 2z(+)(0—)

Therefore, it can be stated in the general N-port case that

Y4y (00 = %gg . (c18)




Y

wWe would also like to generalize the result shown in Appendix
C.1l, that in the limit as £ (or in the general case [&J ) approaches 0,
the model behaves as if no transmission lines were present. Mathematically

we need to show that

First let us define some normalized quantities. Assuming that z . #0
for any n, then Zo is invertible. 1In addition, since zo is diagonal, there

exists a matrix zok such that

h -1

-&
and where Zo = (Zo )

z b4 =2 . (C20)

Now we will define the following normalized values of ZT and ZA'

z! =12 zZ,. Z =2 z.=2_ 2 (c21)
since ZT is diagonal, and

z = Z Z, Z (C22)

With these normalized quantities, let us rewrite some of the expressions

previously derived. First consider S(&) from Equation (C10).

-1
Sg-) = (z, - 20) (2, +2Z)
_ L ' h _ Y K Y 4k Y oy -
=z’ 2, 2, z,2,) (22, 27 + 2 "2 )
=z (z! -1z B z! + 1) Lg "
[o] A [e} [o] A (e}
sz @ -1 (2! + g " (€23)
[o) A [¢]
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APPENDIX G
GRADIENTS OF PSUEDO-ANALYTIC FUNCTIONS AND

APPLICATIONS TO COMPLEX GRADIENT CONTROL

Appendix G.l: Theoxry of Psuedo-Analytic Functions

In the theory of complex variables analyticity is a very use-
ful property of a function. It allows one to treat the function as a
real function of a real variable when differentiating.

There are, however, many important functions, e.g. squared
magnitude and conjugation of a variable, which are not analytic. 1In
this appendix a property called psuedo-analyticity is defined. Many
tools for the study of this property are derived. Finally, with these
tools the gradient control law for complex variables is derived.

From single variable complex analysis we know that if a func-
tion of a complex variable f(z) = u(x,y) + jv(x,y) where (z = x + jy)
is analytic, then there is a well defined derivative such that f and z
follow all the basic rules of differentiation of a real function with
respect to a real variable.

af _ ou _ .9v _ v _ . du

£(z) =3, = % I T 3y } 3y (GL)

A necessary and sufficient condition for analyticity is that the func-

tion satisfy the Cauchy-Riemann equations.

.§E~=-a—v and --§E=_3_Y.
9x oy oy ax (G2)

These equations can be written more compactly as

of _ _.of
3x Yoy (G3)

1_'_:.,";1

Now let f be a complex scalar function of N complex variable,

L
PO S

f(zl' 22""'ZN) = u(zl""'zN) + jv(zl,...,zN), where z, = x; + in.
Also let f be analytic with respect to z, over the range of all possible

values of the other variables. We may then define the complex partial

derivative.
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The Inequalities (F1l a and b) can be rewritten and combined

more conveniently as

< 2 - Re(m (F2)

22P5]

7T p
Re[ myp Py~ Amy, PP, ]

Note if Re[m ] > 2, then the right side of Inequality (F2)

22P2
is negative and no value of p 1 can satisfy the constraint. If, however,

Re[mzzpz] < 2 then there exists a range of values that will satisfy the
constraint. One such value is
n 2
p. = M2 Py
l ———
4m 2
12

which makes the left side of (F2) egual to zero.
We have shown that an auxiliary with a reflectivity that would
normally make it unstable, can sometimes be stabilized by the pressence

of a second auxiliary antenna.
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APPENDIX F

A STABILITY ANALYSIS EXAMPLE

Stabilizing An Unstable Element

Consider the 2-element auxiliary array illustrated in Figure Fl.
It is assumed the self coupling factor, return loss, of the first antenna
is zero, the main antenna is absent or has po = 0, and the reflectivities
have dominant single stage narrowband filters in the reflectivities so
that Re [all eigenvalues] < 1 is both necessary and sufficient for stability.

Congider the case Re[m ] > 1. The second antenna then by

o]
2272
itself, or with P = 0, would be unstable. It shall be shown that under

certain conditions, Re[mzzpz] < 2, there are choices for Py which will
stabilize the array.

First we need to find the eigenvalues of MP for this array.

0 m o) 4] o m, .0
W = 12 1 - 1272

m m

12 P22 0 Py maPy B

22P2
Characteristic Equation = det[sI - Mp] ..

s -m_.p
- get 12°2
2P

= s - sm -mn 2
smy2P) 12 P1P,

1 LY

The eigenvalues are the roots of the characteristic equation.

2 2 2
. k4 -
Eigenvalues = m2202 \/m22 p2 4m12 plpz
2

The stability constraint applied to these eigenvalues yields
two inequalities.

- T
I3 2
m P, +\/m__"p " - 4m,_p.p <

Re | P22P2 22 P2 12 P1P2 1 Fla)

b 2 =
andé

~ ) -\/h 22 _ 4 2 7

rRe | M22P2 12 P2 T2 PPy <1 (F1b)
L 2 i
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Note the quantity within the brackets is necessarily positive because

the term underneath the radical is the sum of two squares, rlcos 26-1
2 -

and r  sin 26.

Substitite cos 8 = /(1 + cos 28)/2 into (E8) and square both

sides.

2
55 (1 + cos2 ) >-%[\/;4 + 1 - 2r2c0326 + r2c0s26 - l]

or equivalently

1+ r2 > r4 + 1~ 2r2cosze (E9)

squaring both sides of (E9) now yields

1+ 2r2 + r4 > r4 +1 - 2r2c0529

2r2 > -2r2c0529

1 > -cos20

This will be true if 6 # m/2 + m7 for m = 0, %1, *2,.... But we have
the constraint |9| < m/2; therefore, it is always true.

Thus, we have shown for a single stage narrowband filter in
the reflectivities the stability constraint Re[kn] < 1 is sufficient.

Necessity is shown by considering the frequency wo’ where f(jwo) =1,

and noting that Re[An] < 1 is the necessary constraint derived in Sec-

tion 4.2.




The roots of (E4) are found from the quadratic equation.

2
(o]

-wo[-%—u-x)a' (qu) -1] (ES5)

We want to show the two values 'of (E5) are in the left half plane if
Re(An] < 1l. Let x = b(l - An)/zuo, then equivalently we can show

e[—x:_sz-l]<0 for Re [X] > O . (E6)

b 2
roots = - 7(1 -An) + ‘[-g—(l- A )] -

(E6) is really two inequalities, one for each choice of the ambiguous

sign. These can be combined as in (E7).
Re[x] > [ReVx? - 1| (E7a)
Let x = reJe, where |8| < m/2. Then (E7a) becomes

r cos 6 > |Re\/r2e329 - 1]

2
> [Re'\/r cos 20 - 1 + jrzsin 26| {E7b)

At this stage an identity for complex numbers becomes useful. If

= + 3 where
o OR JOI e UR

o=t [u+0 j\/u"’n]

-‘, 2 2
where Y = OR + OI and all square roots on the right side are positive.
This identity can be easily verified by squaring. Using the real part

’ OI are real, then

of this identity, we can rewrite (E7b)

1
rcos 6> |t = \[r4cos226 +1 - 2z2cosze + r4sin226 + r2c0529 - 1:'5 ‘
%3 ]
1 ]
'fz'. [Vr4 + 1 ~ 2r2c0526 + r2c0s26 -1]" (E8) :

E~4
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y N+1
order term of A(*) will vanish. The highest order term will become D
N+1
Since it was assumed that D(s) and N(s) had no common factors, D {8)

(s) .

will not equal zero when N(s) does.

Thus for any zero of (El), N(s) ¥ O. The zeros of (E1l) will
then be the zeros of Alf-l(s)]. The zeros of this factor will be the
values of s for which f_l(s) equals an eigenvalue of M+P+. Therefore,
the array is stable if and only if all zeros of the following N + 1
equations are in the left half plane.

f(s) - =0, n=0, ..., N (E2)

571"

and A is the nth eigenvalue of M P
n + +

Note the similarity between these equations and that for posi-
tive feedback root locus. They are the same if f(s) is considered the
open loop transfer function and An the loop gain. The difference is
that in (E2) An is complex instead of positive real.

Finally, it was mentioned earlier that if a single stage nar-
rowband filter is used in the reflectivity, the necessary stability con-
dition,‘Re[An] < 1, becomes both necessary and sufficient. This shall
now be proved.

What needs to be shown is for f(s) given in (E3), the equations
of (E2) will have no right half plane zeros if Re[kn] < 1.

2 = 7 - b ‘ = 5. (E3)
rwro’ -3 3Vul -G -5 sV - B)]

Here w, is the center fregquency of the filter and b is the 3 dB
bandwidth. It is assumed wo > b/2 and indeed b is small enough that

f(s) =

M+(s) does not change significantly across the filter passband. The equations
of (E2) become

sb 1
z ~a "0°
8 +sb +uWw - n
[o]
or

2

s2 + s8b(l - An) tw "= 0 (E4)
E-3
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APPENDIX E

SUFFICIENCY OF STABILITY CONDITION WITH
NARROWBAND FILTER IN REFLECTIVITIES

Let us apply the general stability criterion of Section 4.2

to the case of narrowband filters within the reflectivities (see Figure

- El). It is assumed that the narrowband filter is narrow enough so that
M+(s) is constant over the passband and is approximated by M+. Also
assume that the filters within the reflectivities are all the same, s0
that the nth entry on the diagonal of P*(s) is pnf(s). Here pn is a
constant and f(s) is the same for all reflectivities. Let £(s) = N(8)/D(s)
where N(s) and D(s) are polynomials with no common factors. In this
case the det[M, (s)P,(s)] = PoPy =- Py T (s)det[u ] is a minor of order N + 1.
Its denominator, p* l, is the lease common denom;nator of all the minors.
Let P+(s) = P+f(s), where P+ with no argument is the diagonal matrix of
the po,...,pN. Then the system is stable if and only if the following
polynomial has no right half plane zeros [16, p.376],

+1
(s) -det|I - M+P+f(s)]

1y - (g cdet[1 - £ (s) - M, ]

= (e etz - £7(s) - Mp)

s Al (m)]

M) Alp(s)/N(s)] (E1)

where A (+) is the characteristic or eigenvalue equation of M+P+.

Note this is a polynomial because A(*) is a polynomial of order

_l A
N + 1 and all the N(8)'s in the denominator of £ “(s) will be cancelled

by the factor NN+1(s) out front.

Let us first see what happens to the polynomial (El) at a zero

+ .
of N(s). Because of the preceding factor of NN %(s) all but the highest
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From the expression for P+ and Identities A.6 and A.7 of Appendix A, it is
seen that

-1
(I + P+) = ZZT(ZT + zoI) {D.4)

-1
(r - P+) = ZZO(ZT + zoI) . (D.5)

Substituting Equations (D.4) and (D.5) into Equation (D.3) obtains

-1 -1
= +
sT + P+ (zT zol) zzT(zT + z°I) 2z°(zT + zOI) M+

-1 -1
e (I - p+M+) (zT + zol) (D.6)

Since 2z° is a scalar its placement is arbitrary. Also since (zT + zoI)
and 2ZT are both diagonal, they commute. Therefore, let us rewrite

Equation (D.6) as below.

-1 -1
ST + P+ = ZZT(ZT + ZOI)(ZT + zoI) (ZT + ZOI) M+

-1 -1
e (I - P+M+) ZZO(ZT + zoI)

1

-1
M+(I - P+M+)

- -1
= ZZT(ZT + zoI) 2z°(zT + zOI)

-1
= (I + P+)M+(I - P+M+) (I -P) (D.7)

It only remains to be shown that

1 -1
(1 - M+P+) M

and the equivalence of Equations (3.16) and (3.21) will have been proved.

~1 -1 -1 -1
M+(I - P+M+) = [(I - M+P+) (1 - M+P+)]M+(IA- P+M+) [(I - P+M+)(I - P+M+) ]

1

-1 -
= (-mup) [(1 - u+p+m+] (1 - BM)

-1 -1
(I ~ M+P+) (M+ M+P+H+)(I P+M+)

~1 1

-(I

!
x
o

[M+(I - P+M+)] (1 ~pM)"
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APPENDIX D

EQUIVALENCE OF EQUATIONS (3.16) AND (3.21)

This appendix will show that the two forms for ST derived in

Section 3.3 are equivalent. These expressions are repeated below.

. ~ _1 _l
Sp = (Zg + z1) (§A -P)(I - PS5 (2, + 2T (3.16)
and

-1
= (I + P+)(I - M+P+) H+(I - P+) -P (3.21)

+
Note that it was shown in the text that M+ = §A and by an arbitrary choice

we shall use the former expression. It will be convenient to add P+ to both

equations and show the equivalence of the resulting two forms for sT + P+.

-1 -1
sT + P+ (zT + zOI)(M+ - P+)(I - P+M+) (zT + zol) + P, (D.1)

However, we know from the text that P+ = (zT - zOI)(ZT + zoI)-l. But since

all the matrices in this expression are diagonal, we can also write

-1
P+ (ZT + z°I)P+(ZT + zoI) . (D.2)

Substituting Equation (D.2) for the last term of (D.l) yields

~1
S, +P, = (ZT + zoI)(M+ - P+)(I - P+M+) (2

-1
T + zoI)

-1
+ (ZT + z°I)P+(zT + zOI)

-1 -1
= (2, + z1) [(M+ BT -PM) T+ p+] (2, + z,1)

-1
(2, + 2,0 [, - ) + B (1 - pup | @ -pu)

2 -1 -1
= (2, + zol)(I - P+ )M+(I - P+M+) (ZT + zoI)

1

-1 -
= (2, + ZOI)(I + P+)(I - P+)M+(I - P+M+) (zT + ZOI) (D.3)

+ zoI)

fi'a sk

,
'« ‘2

s

.
.




Now let us determine !(+)(0+) in terms of the source voltages Yy From

!
|
.‘ Equation (C1l8) we see that Yi4) !1+)(0-) is now the traveling ,w;j

voltage wave from the source incident on the termination transmission /

(0-) = { v .
—g
line interface. !(+)(0+) is composed of the component transmitted
through the interface by x(+)(0—). which is (I - P+)!(+)(0-), and by
itself first reflected off the antennas and then off the terminations,

P+M+l(+)(0+). As an equation this becomes

!(+)(0+) = (I - P+)21+)(0—) + P+M+g(+)(0+) (C30)
RN
Solving Equation (C30) for !(+)(0+) we obtain
v, (04 = (1 -2M)7 Y (x-p)v, (0m)
=(+) 4 + ()
-1 >" <4
=%(I-PM) (I -—p+)1'g "
.
Finally we may substitute this into Equation (C29).
O | -1 -1 —
i(%) =hz ~(D-D MI(I -P M) (X P.,’.‘Lg (€31) -
If all the transmission lines have the same impedance, then zcrl = (1/z°)I };f;
and (I - P+M+) = Q;?. If the lines are short compared to a wavelength, g
then D = I. Under these assumptions the port currents become .
- 4
. 1 -1,7T ]
2 - ~ . - . 2 S
i) 220 (1 M+) (Q+ ) (I P+)\_lg (C32) D

...ﬁv‘r—.f
]
[ G
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Therefore, M+ is symmetric if S(f-) is symmetric. From Equation (C8)
< S(-) = [z z) [z, +2)°°} ‘
E 7 = {2, o A o :

From Identity A.5 of Appendix A, we see that S(L-) is symmetric if :'.:ﬂ-»:j
T, . . , el
ZA zo is. But zA is symmetric, and if Zon ™ % for all n, then -5

which is symmetric. Therefore, if all the zon are egual, then M+ is
symmetric.

Dt S

Finally, an expression for the antenna port currents, ijgg, will be

derived in terms of transmission line parameters. By definition and from

Rule 1, we obtain an initial expression for i().

e e ey

B0 =i, (@) + i (8

-1 -
=2, V&) -2 ! v

o Yiu) (<) &) (c27) —

For simplicity of notation let the delay matrix D(&) be denoted as D.
Noticing that

(&-) =Dy,

MO (o+)

)

-1
Vy&) =D V(- (0

Equation (C27) can be rewritten as below.

. _ -1 _ -1
i) =2z DV 4y (0+) =D v _, (04 (c28)

But we also know that X(-)(O+) = M+!(+)

and Equation (Cl16). This can be substituted into Equation (C28) to obtain

(0+) from the definition of S(0+)

10 =z (0 - D My, (06, (c29) -

c-11 -




Using Identity A.3 of Appendix A, we can put Equation (C23) into a form
that will turn out to be more convenient. (It was the use of this

identity that required the normalization procedure.

b

o) = ' -1
S(2-) z, (z, +1)

(zA' - 1) zo” (C24)

However, as I&J approaches, D(&) approaches I. Therefore, from Equation (Cl1l)

lim S(0+) S(2-)
b ' -1 ' -k

|2]~0
=z % (2 - Dz, (C25)

&; (o} A A

We can now show the limit as I&J approaches 0 of Z(0) is Z,- From

Equation (Cl2) and noting that Z(0) = Z(0+), we obtain

lim  2(0) = lim [I - s(0+)]1 1[I + s(o0))z_

|2]>0 |2]+0
- . R -1 _ -5 ,-1 Y oo -1 _ b
= [1 zo (zA + I) (zA I)zo 1 “[1 + zo (zA + I) (zA - 1)zo ]zo
ok _ ‘ -1, , -1 -% Xk ‘ -1, 1 ]
=z [1 (zA + I) (zA -1)] z, "2, [T + (zA + I) (zA ~ I)]Zo z,

k] ' ] -1, _ ) ~1. s ) A
ZO[ZA+I—ZA+I] (ZA+I)(ZA+I) [zA+1+zA -I]zo

] -1 1 b
Z, (21) (ZZA )ZO

A . (C26)

Now it will be shown that if all the transmission lines are of

the same characteristic impedance, then M+ = SA = S$(0+) is symmetric, i.e.,
T

M+ = M+.

M = S(0+)

D(&)S (£-)D(L)

D" (2)S(2-)D (L)

because D(x) is diagonal and hence symmetric.

c-10




" -— of du .av v .ou
. A =2 w7 vt )3T = AT - I)aT (G4)
i] Bzi 3xi Bxi 3yi Byi

| - If f is analytic for all the variables ZyresesZ then one can define

N'
-
) a complex gradient
i .
oF,
Ji
V£ :
of
oz (G5)
n

Consider a function g(z) = r(x,y) + jq(x,y), which is not
analytic, but whose real partials 3r/9x, 949/9x, 9r/Jdy and 3g/dy exist
throughout the region of interest. Such a function is defined to be
psuedo-analytic. For such a function it is useful to define the

psuedo-derivative §'(z) as in (G6).

a ' gﬂ = -ai '-a_g- = a_r + _;_33 + . ar - Qg

dz ox Joy ox ox oy 3y (G6)

Note from (G3) we see that the psuedo-derivative of an analytic function
is zero. The computation of the psuedo-derivative can be a test for
analyticity.

Psuedo-analyticity can be extended to multivariate functions
as analyticity was. Consider a complex scalar function of N complex
variables g(zl....,zN) = r(zl,...,zN) + jq(zl,...,zn). If the partial
derivatives ar/axi, ar/ayi, aq/axi and aq/ayi exist for all possible
values of the other variables, then g is said to be psuedo-analytic in

z; and one can define the psuedo-partial derivative as in (G7).

% _ 3% , ;8 _ & . .3q _ 3 . 3 7
azi axi Jayi ox. Jaxi Byi Byi (67)

Similarly, if g is psuedo-analytic for all the variables zl.....zN, then

one can define the psuedo-gradient as in (G8).




+J

ay (G8)

Again, note for an analytic function £, V£ = 0.
To ease the cumbersome notation, let us define the operators

Vx(°) and Vy(').

3() 3(-)
afl 3¥1
Vi = ¢ and V () =|
a() 8()
oxy oy (G9) N

With these operators Equation (G8) can be rewritten.
A

Vg = Vg + Vg

= er + ijq - qu + ijr (G10)

Note Yx(g*) = er - ijg = (ng)* where ( )* denotes conjugation. Simi-
larly, Z{(g*) = (Vyg)*. From Equation (G3), we see the gradient for

an analytic function £ is easily written as in (Gll).

VE = fo = -jvyf (Gll)
Finally, we define the operator V , the conjugate psuedo-gradient,
in (G12).

sl

Vg= V9-iVg (G12)

Note for an analytic function £, the conjugate psuedo-gradient is not

zero but twice the analytic gradient.

a

VE= V-3V E = 2Vf (G13)
x Yy

G-3 -




We will prove three theorems useful when working with psuedo-

gradients.

Theorem l: The conjugate of the psuedo-gradient is the conjugate psuedo-

gradient of the conjugate, i.e.,

“k ®

v ' o= Vg . (G14)

el . *
proof: (Vg) (ng + JVyg)

*
= (er + Jqu - qu + JVYI)

er - ijq - qu - ijr

v * v *
= V9 -3 yg

Theorem 2: For two psuedo-analytic functions of N variables, 9, and 9

the product rule of derivatives holds, i.e.,

V(glgz) 91V92 +g,Vg . (G15)

proof: V(glgz) Vx(glgz) + jvy(glgz)

= glvng + g2vxgl + ngvng + ngvygl

~ ~
= g,V9, + 9,9,
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Theorem 3: For an analytic function f£,

b - v|e|2 = 2e0v8)" (c16)

proof: Vlfl2 = e(ff*)

A

= fVf + £VE , from (Gl5)

_ - = f(Vf*) + 0 + from note after (G8)
. ol N
{ = f(V £) . from (Gl4)
= £(2Vf). , from (G13)

%
= 2f(Vf)

Appendix G.2: Complex Gradient Control

Consider a system (e.g. a parasitic array) that is controlled
by N complex state variables zl,...,zN (e.g. the reflectivities). It
is desired to minimize some positive definite scalar quantity, V(2)
(e.g. power received at the main antenna). A function is positive defi-
nite if it is nonnegative real for all values of its arguement and is
zero only for an arguement of zero. Note that v(z) is not analytic in
any of its state variables. If, however, v(z) is psuedo-analytic in
all of its state variables, one can employ the complex gradient control
algorithm defined by (G17).

N

ce o

z=-kVV(z) , wherek >0, z= (G17)

N

~
and V is the psuedo-gradient defined in the previous section.

In applying this control law one equates real and imaginary
components of both sides. Let z = x + jy where x and y are real vectors.

Then (Gl7) implies the following two real control laws.

. ~ ':.—j-f.j
x = ~k Re [V V(2)] (G18) T
L=k m Vvl (G19) T




CIRNEL

mA

Prom Equation (GlQ), we can rewrite (G18) and (G1l9).
x = -k Re [va (x,y) + ijv (5._,\'_)]

) =~k Vv (xy) (G20)

g -xm [Ty + 39V

= =k VyV (E_'X_) (G21)

The quantity GV(x,y) separates into real and imaginary components as
above because V,V and Vyv are purely real since V is positive definite.

But Equations (G20) and (G2l) simply represent the familiar
real gradient control law for the 2N real variables xl,...,xN, yl"’f'yu'
The complex control law of (Gl7) is just a compact way of writing this
for complex variables.

Let us now compute dvV/dt from the real multivariate chain
rule.

av Te Te
o (VxV) x + (VYV) Y
[~ . *T . ..
=Re | (VV+ vav) (x + 3y)

A

=Rre | (W2 ]l

- re [ () Tk W)
= -k|W]|?

(G22)

We see that dV/dt is always nonpositive. Thus the system is stable in
a control sense. This progerty of dv/dt is negative semi-definiteness.
I1f av/dt or equivalently |VV|2 is zero only when z = 0, then dV/dt would
be negative definite and the system would be assymptotically stable in a
control sense. This means there are no nonzero local minimum of V for
the control law to get trapped in and it will always drive V to zero.

A useful special case is when V(2) = |f(gp|2 where £(z) is an
analytic function over all the state variables. We can then apply
Theorem 3 of the previous section to Equation (G17).

z = -2k £(VE)" (G23)

T YETY TTN TTT U TR N T T T Ty T
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This is the form of the complex gradient law we shall find most useful
in our analysis.
Lastly, consider the example of a conventional adaptive array,

as in Figure 1 of the text. The array output is given by (G24).
T
€ = yo +yw {(G24)

where Yo is the signal at the main antenna, y is the vector of signals
at the auxiliary antennas and w is the vector of the adaptive weights.

It is desired to minimize |e|2. We can apply (G23).

*
w = -2k €(Ve)

x
= -2k €y from Identity A.17 (G25)

This is the well known least mean square (LMS) algorithm.

Appendix G.3: Gradient Control of Active Complex Parasitic Terminations

Let us apply this theory to the adaptive control of parasitic
elements. Consider Equation (Gl7). Our positive definite function is
‘yol ¢+ the power incident on the termination of the main antenna. To
apply (Gl7) we need state control variables which are zero when Iy |
Let these variables be L = p -p no’ where p is the nth reflectivity
and p no is the value of this reflectivzty necessary for a null. From
Chapter 2, we know |y | as a function of the reflectivities Py Let
us signify this by |y°(p)| = Iyo(z + )| where p, z, and 20 are
respectively vectors of the pn, z and pno. Lastly, lgt Vp( ) repre-
sent the gradient with respect to thep and Vz( ) and Vz( ) be the
gradient and psuedo-gradient with respect to the L Equation (Gl17) now
becomes (G26).

o 2
z=p=-k |y (z+p)]

*
=-2ky(z+p)[VY(z+9)]
z zd o'
0 0 0 0 (G26)
Note with the notation of Appendix a,

o T
szo(g tp) - ayo/a_z_ = (dy,/9z")
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We can apply the chain rule of A.20 and obtain (G27).

T,T
szo(g + Qo) = (ay(/a;_)

T T |T
= (ayol p) (3p/3z)) (G27)

[TAl

But QQ/QE? is the identity matrix. Equation (G27) then becomes

Vv lz+py = (g £)°
= ay,/%
= pro(gp (G28)

This has simply been an application of the chain rule to the set of trans-
lated variables z = pn - pnO' The result allows us to state the control
law in terms of the reflectivities without the need to know the values

necessary for nulls.
- *
= - 2
= -2k y () [pro(_g)] (G29)

The vector p is not used in computation, but the reflectivities are
arranged into the diagonal matrix P. To use Egquation (G29) we must
separate it into N equations of the form.

*

E)n = ~2k Yo ayo . n=1, ..., N (G30)

apn

We must now compute Byo/apn. The relationship of Yq and P, is expressed
by Equation (2.3).

T
- +
Yo = Y50 * Pooo¥o T o FX

X =Y * PRy, + MPY (2.3)
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Let us differentiate both sides of these equations using differentiation
formulae A.16 and A.17.

oy ay
0 . ) T +p A G3l
apn Po™00 3pn + o, <Enn1 ap (G3la)
T
3y A, 9y )
o — = pm - 4+ M[E + P —

apn 00 apn ( nny Bpn (G31b)
where E [éi-n, J-m]

oy

Solve (G3lb) for -5-6— and substitute into (G3la).
n

%, 3, T -1/ ¥ ’
%, - P03 TR (et TP Po%o3p T Mnnd

= po< PQ I+PQ M E Y (G32)

where 9 = I - MP
Note the existance of Q is necessary for RF stability. Using matrix
identity A.8 with B =1, V=M, U=P, and realizing MP = (PM)",E, one can
show (I + PQ“IM) = (Q-l)T. Lastly, define [ vector of all zeros
except the nth element which is 1. Then Enn = EnEnT' and Enny- = Snyn'

We can now solve (G32) for Byo/apn.

T -17T

o By (@ )e ,

- n
°Pn i- Po (moo + _n_!OTPQ lgo) o
Rk
- £ ? % Y, 7f'-:7tfzi

" Po ( oo * 8o P2 “‘o)
=-Qy , where this defines a_ . (G33) . 1‘
n'n n oo
G-9
'''''' e e e e e ‘; A ‘-."'.-' ."‘.‘ e ._j-_. R




Equation {G33) can be substituted into the control law of (G30).

*
Py = -2k y, (o y) (G34)

npt

Compare this expression to the LMS control law for a conventional adaptive
®

array in (G25). They are the same except for the factor an + where pn

corresponds to LA A to € and Y, to the signal at the nth antenna. The

physical significance of an is discussed in the test.

G-10 -

-
--------
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APPENDIX H

DERIVATION OF GRADIENT CONTROL WITH PILOT

From Appendix G, Equations (G30) and (G31) state the gradient
control law for an adaptive parasitic array.

': . *
Py = —2ky0(anyn) r for k>0 (G31)
T -1 ¢
e O m o
where o = =2 =0 and ¢ = 2‘ nth element
T -1 0
1= Py (myy + myPQ "m) 3/ (630

In implementing gradient control it will be necessary to estimate the
factor an. It will be shown in this appendix that a pilot signal sent
up the main antenna will be received at the nth auxiliary antenna multi-
plied by the factor o under the condition po = 0. -1

From the expression for un above, we see that un = gnQ my-
Now consider a pilot signal, ypo, injected upward at the main antenna
(see Figure Hl). This upward voltage traveling wave couples to the N

auxiliaries with the coupling factors of This creates an initial

-
Epro' -
final vector of downward traveling voltages, xp. is found to be Q

downward vector of traveling waves of From Equation (2.5b) the

1
"hen po = 0. The Voltage t.raveling downward at the nth antenm’ y ’

i To~1
is enQ EprO'

k;c
<}
n

)

!
=
L]

a (H1)

4
4

.

It can be shown for the case po # 0, through Equations (2.3
a and b), that the ratio ypn/ypo is in general given by (H2).

¥Ypn T P v |7t (H2) 4
= 1 +(70 T
¥po T, | | <l_—m_—p—>%§°P %o i
00"0 00" 0 RO

This does not equal @ . Thus the constraint Po = 0 is clearly needed. Zi{;;
H-1 i

......
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Figure H1 Pilot Signal Injection
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